Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 4(3): 243-256, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32547784

ABSTRACT

Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.

2.
Glob Chang Biol ; 25(12): 4222-4233, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31502733

ABSTRACT

Globally, lake fish communities are being subjected to a range of scale-dependent anthropogenic pressures, from climate change to eutrophication, and from overexploitation to species introductions. As a consequence, the composition of these communities is being reshuffled, in most cases leading to a surge in taxonomic similarity at the regional scale termed homogenization. The drivers of homogenization remain unclear, which may be a reflection of interactions between various environmental changes. In this study, we investigate two potential drivers of the recent changes in the composition of freshwater fish communities: recreational fishing and climate change. Our results, derived from 524 lakes of Ontario, Canada sampled in two periods (1965-1982 and 2008-2012), demonstrate that the main contributors to homogenization are the dispersal of gamefish species, most of which are large predators. Alternative explanations relating to lake habitat (e.g., area, phosphorus) or variations in climate have limited explanatory power. Our analysis suggests that human-assisted migration is the primary driver of the observed compositional shifts, homogenizing freshwater fish community among Ontario lakes and generating food webs dominated by gamefish species.


Subject(s)
Climate Change , Lakes , Animals , Ecosystem , Eutrophication , Fishes , Humans , Ontario
3.
Nat Commun ; 9(1): 973, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29511186

ABSTRACT

Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11o latitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently 'scale-up' to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.


Subject(s)
Biodiversity , Fishes , Lakes , Animals
4.
Oecologia ; 167(2): 391-400, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21516310

ABSTRACT

There is considerable variation in cannibalism between different species and also between individuals of different species, although relatively little is known about what creates this variation. We investigated the degree of cannibalism in guppy (Poecilia reticulata) populations originating from high and low predation environments in Trinidad, and also how cannibalism was affected by the presence of refuges. Females from two populations were allowed to feed on juveniles from two populations in aquaria trials. The cannibalism was size-dependent and varied depending on both juvenile and female origin. Low predation females were more efficient cannibals and low predation juveniles were better at avoiding cannibalism compared to high predation guppies when no refuges were present. The high predation females were superior cannibals and the high predation juveniles were better at escaping cannibalism than the low predation guppies when refuges were present. We discuss whether the differences in cannibalism and response to refuge addition relate to predation-induced habitat shifts and differences in the guppies' natural environment.


Subject(s)
Cannibalism , Poecilia/physiology , Adaptation, Physiological , Age Distribution , Analysis of Variance , Animals , Body Size , Chi-Square Distribution , Environment , Female , Food Chain , Linear Models , Trinidad and Tobago
5.
J Anim Ecol ; 80(3): 615-21, 2011 May.
Article in English | MEDLINE | ID: mdl-21323922

ABSTRACT

1. Recent theoretical insights have shown that predator species may help each other to persist by size-selective foraging on a shared prey. By feeding on a certain prey stage, a predator may induce a compensatory response in another stage of the same prey species, thereby favouring other predators; a phenomenon referred to as emergent facilitation. 2. To test whether emergent facilitation may occur in a natural system, we performed an enclosure experiment where we mimicked fish predation by selectively removing large zooplankton and subsequently following the response of the invertebrate predator Bythotrephes longimanus. 3. Positive responses to harvest were observed in the biomass of juvenile individuals of the dominant zooplankton Holopedium gibberum and in Bythotrephes densities. Hence, by removing large prey, we increased the biomass of small prey, i.e. stage-specific biomass overcompensation was present in the juvenile stage of Holopedium. This favoured Bythotrephes, which preferentially feed on small Holopedium. 4. We argue that the stage-specific overcompensation occurred as a result of increased per capita fecundity of adult Holopedium and as a result of competitive release following harvest. If shown to be common, emergent facilitation may be a major mechanism behind observed predator extinctions and patterns of predator invasions.


Subject(s)
Biota , Cladocera , Food Chain , Predatory Behavior , Selection, Genetic , Zooplankton , Animals , Biomass , Body Size , Cladocera/growth & development , Fresh Water , Life Cycle Stages , Models, Biological , Population Density , Population Dynamics , Reproduction , Zooplankton/growth & development
6.
J Anim Ecol ; 79(4): 871-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20337754

ABSTRACT

1. Recent theory suggests that compensation or even overcompensation in stage-specific biomass can arise in response to increased mortality. Which stage that will show compensation depends on whether maturation or reproduction is the more limiting process in the population. Size-structured theory also provides a strong link between the type of regulation and the expected population dynamics as both depend on size/stage-specific competitive ability. 2. We imposed a size-independent mortality on a consumer-resource system with Daphnia pulex feeding on Scenedesmus obtusiusculus to asses the compensatory responses in Daphnia populations. We also extended an existing stage-structured biomass model by including several juvenile stages to test whether this extension affected the qualitative results of the existing model. 3. We found complete compensation in juvenile biomass and total population fecundity in response to harvesting. The compensation in fecundity was caused by both a higher proportion of fecund females and a larger clutch size under increased mortality. We did not detect any difference in resource levels between treatments. 4. The model results showed that both stages of juveniles have to be superior to adults in terms of resource competition for the compensatory response to take place in juvenile biomass. 5. The results are all in correspondence with that the regulating process within the population was reproduction. From this, we also conclude that juveniles were superior competitors to adults, which has implications for population dynamics and the kind of cohort cycles seen in Daphnia populations. 6. The compensatory responses demonstrated in this experiment have major implications for community dynamics and are potentially present in any organisms with food-dependent growth or development.


Subject(s)
Body Size , Daphnia/growth & development , Animals , Biomass , Fertility , Population Dynamics
7.
J Anim Ecol ; 78(6): 1152-62, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19682142

ABSTRACT

1. The size of an individual is an important determinant of its trophic position and the type of interactions it engages in with other heterospecific and conspecific individuals. Consequently an individual's ecological role in a community changes with its body size over ontogeny, leading to that trophic interactions between individuals are a size-dependent and ontogenetically variable mixture of competition and predation. 2. Because differently sized individuals thus experience different biotic environments, invasion success may be determined by the body size of the invaders. Invasion outcome may also depend on the productivity of the system as productivity influences the biotic environment. 3. In a laboratory experiment with two poeciliid fishes the body size of the invading individuals and the daily amount of food supplied were manipulated. 4. Large invaders established persistent populations and drove the resident population to extinction in 10 out of 12 cases, while small invaders failed in 10 out of 12 trials. Stable coexistence was virtually absent. Invasion outcome was independent of productivity. 5. Further analyses suggest that small invaders experienced a competitive recruitment bottleneck imposed on them by the resident population. In contrast, large invaders preyed on the juveniles of the resident population. This predation allowed the large invaders to establish successfully by decreasing the resident population densities and thus breaking the bottleneck. 6. The results strongly suggest that the size distribution of invaders affects their ability to invade, an implication so far neglected in life-history omnivory systems. The findings are further in agreement with predictions of life-history omnivory theory, that size-structured interactions demote coexistence along a productivity gradient.


Subject(s)
Body Size/physiology , Ecosystem , Fishes/physiology , Predatory Behavior/physiology , Animals , Extinction, Biological , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...