Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782113

ABSTRACT

In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.


Subject(s)
Calcium Channels/metabolism , Glutamic Acid/metabolism , Presynaptic Terminals/metabolism , Animals , Calcium Channels/genetics , Cells, Cultured , Hippocampus/cytology , Mice, Knockout , Presynaptic Terminals/ultrastructure , Protein Isoforms/metabolism
2.
Nat Nanotechnol ; 12(3): 260-266, 2017 03.
Article in English | MEDLINE | ID: mdl-27842062

ABSTRACT

High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microscopy, Atomic Force/methods , Protein Domains , Protein Transport
3.
FEBS Lett ; 589(19 Pt B): 2747-53, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26257049

ABSTRACT

The stress inducible heat shock protein 70 (Hsp70) is present specifically on the tumour cell surface yet without a pro-tumour function revealed. We show here that cell surface localised Hsp70 (sHsp70) supports clathrin-independent endocytosis (CIE) in melanoma models. Remarkably, ability of Hsp70 to cluster on lipid rafts in vitro correlated with larger nano-domain sizes of sHsp70 in high sHsp70 expressing cell membranes. Interfering with Hsp70 oligomerisation impaired sHsp70-mediated facilitation of endocytosis. Altogether our findings suggest that a sub-fraction of sHsp70 co-localising with lipid rafts enhances CIE through oligomerisation and clustering. Targeting or utilising this tumour specific mechanism may represent an additional benefit for anti-cancer therapy.


Subject(s)
Clathrin/metabolism , Endocytosis , HSP70 Heat-Shock Proteins/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Animals , Cell Line, Tumor , HSP70 Heat-Shock Proteins/chemistry , Membrane Microdomains , Mice , Protein Aggregates
4.
Eur Biophys J ; 44(1-2): 49-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25471938

ABSTRACT

Cutaneous malignant melanoma is one of the most lethal types of skin cancer. Its progression passes through several steps, leading to the appearance of a new population of cells with aggressive biological potential. Here, we focused on the nano-characterization of two different melanoma cell lines with similar morphological appearance but different metastatic potential, namely, WM115 from vertical growth phase (VGP) and WM266-4 derived from metastasis to skin. The first cell line represents cells that progressed to the VGP, while the WM266-4 cell line denotes cells from the metastasis to skin. Exploring with a combination of atomic force and fluorescence microscopes, our goal was to identify cell surface characteristics in both cell lines that may determine differences in the cellular nano-mechanical properties. Cell elasticity was found to be affected by the presence of F-actin-based flexible ridges, rich in F-actin co-localized with ß1 integrins in the studied cell lines. These results point out how progressive changes in the surface structure of melanoma cells can affect their bionanomechanical properties.


Subject(s)
Cell Membrane/ultrastructure , Melanoma/ultrastructure , Actins/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Elasticity , Humans , Integrin beta Chains/metabolism , Melanoma/metabolism
5.
PLoS One ; 9(1): e85934, 2014.
Article in English | MEDLINE | ID: mdl-24454946

ABSTRACT

The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca(2+) imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca(2+) response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca(2+) signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.


Subject(s)
CD3 Complex/metabolism , CD59 Antigens/metabolism , Calcium Signaling , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology , Receptors, Antigen, T-Cell/metabolism , Cell Membrane/metabolism , Humans , Jurkat Cells
6.
Cancers (Basel) ; 6(1): 42-66, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24362507

ABSTRACT

Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same time, tumor-derived extracellular Hsp70 has been recognized as a "chaperokine", activating antitumor immunity. In this review we discuss localization dependent functions of Hsp70 in the context of invasive cancer. Understanding the molecular principles of metastasis formation steps, as well as interactions of the tumor cells with the microenvironment and the immune system is essential for fighting metastatic cancer. Although Hsp70 has been implicated in different steps of the metastatic process, the exact mechanisms of its action remain to be explored. Known and potential functions of Hsp70 in controlling or modulating of invasion and metastasis are discussed.

7.
Immunol Lett ; 152(1): 55-64, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23583459

ABSTRACT

When transmembrane form of tumor necrosis factor (mTNF) interacts with its cognate receptors or agonistic antibodies signaling pathways are activated in the ligand expressing cells. This "reverse signaling" appears a fine-tuning control mechanism in the immune response. Despite a clinical relevance key molecules of TNF reverse signaling and their functions remain elusive. We examined the role of CKIP-1, an interacting partner of the N terminal fragment of mTNF in inflammation and TNF reverse signaling. We found that CKIP-1 expression was elevated upon LPS challenge in THP-1 human monocyte model cells. Overexpression of CKIP-1 triggered classical activation of THP-1 cells and transactivated the human TNF promoter when co-expressed with c-Jun in the HEK293 model system. TNF reverse signaling induced a massive translocation of CKIP-1 from the plasma membrane to intracellular compartments in THP-1 cells. Expression of the N terminal fragment of mTNF in HEK293 cells resembled the effects of TNF reverse signaling with respect to relocalization of CKIP-1. In parallel with the translocation, CKIP-1-triggered activation of THP-1 cells was antagonized by TNF reverse signaling. Similarly, the presence of the N terminal fragment of mTNF inhibited CKIP-1 mediated TNF promoter activation in HEK293 cells. Both TNF reverse signaling in THP-1 cells and expression of the N terminal fragment of mTNF in HEK293 cells were found to induce apoptosis that could be prevented by overexpression of CKIP-1. Our findings demonstrate that CKIP-1 activates pro-inflammatory pathways and interferes with TNF reverse signaling induced apoptosis in human model cells.


Subject(s)
Carrier Proteins/metabolism , Inflammation Mediators/metabolism , Membrane Proteins/metabolism , Monocytes/immunology , Tumor Necrosis Factor-alpha/metabolism , Apoptosis/genetics , Carrier Proteins/genetics , Feedback, Physiological , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides/immunology , Membrane Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Transport/genetics , Signal Transduction , Transcriptional Activation/genetics , Transgenes/genetics , Tumor Necrosis Factor-alpha/genetics
8.
Hippocampus ; 22(3): 434-41, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21240919

ABSTRACT

Sprouty proteins act as negative feedback inhibitors of fibroblast growth factor (FGF) signaling. FGFs belong to the neurotrophic factors and are involved in axonal growth during development and repair. We investigated the expression of Sprouty isoforms in hippocampal neurons as well as the regulation of Sprouty2 and -4 during development and their role in axon growth. Sprouty2 and -4 were located in the nucleus, the cytoplasm, in dendrites, and axons of hippocampal neurons concentrated in growth cones. During development in vivo and differentiation in vitro, expression of Sprouty2 and -4 was gradually downregulated in hippocampal neurons. Between 5 and 24 days in culture expression of both Sprouty isoforms was reduced by 70%. In vivo expression of Sprouty2 was reduced by 79% and of Sprouty4 by 93% on postnatal day 14 compared to embryonic day 16.5. Downregulation of Sprouty2 and -4 by shRNAs strongly promoted elongative axon growth by cultured hippocampal neurons, which was further increased by FGF-2 treatment. In addition, FGF-2 reduced expression of Sprouty2 by 33% and of Sprouty4 by 44%. Together, our results imply that Sprouty2 and -4 are downregulated in the hippocampus during postnatal brain development and that they can act as regulators of developmental axon growth.


Subject(s)
Axons/metabolism , Fibroblast Growth Factors/antagonists & inhibitors , Growth Cones/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Adaptor Proteins, Signal Transducing , Animals , Cells, Cultured , Down-Regulation , Hippocampus/cytology , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Mice , Nerve Tissue Proteins/genetics , Neurons/cytology , Protein Serine-Threonine Kinases , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...