Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res ; 37(2): 209-219, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33868978

ABSTRACT

Chronic use of alcohol and tobacco cigarettes is associated to millions of deaths per year, either by direct or indirect causes. However, few studies have explored the additional risks of the combined use of these drugs. Here we assessed the effect of the combined use of alcohol and cigarette smoke on liver or kidney morphology, and on biochemical parameters in chronically treated rats. Male Wistar rats were allocated to receive 2 g/kg alcohol orally, which was followed by the inhalation of smoke from six cigarettes during 2 h (ALTB group) for 28 days. Other groups received alcohol alone (AL) or were exposed to cigarette smoke (TB) alone and were compared to control (CT) rats, which received water followed by ambient air. On day 29, rats were euthanized and blood samples were collected for aminotransferase enzymes (AST and ALT), creatinine, and urea analysis. Liver and kidney were weighted, dissected, fixed, and stained with hematoxylin and eosin for morphological analysis. Our results showed that necrosis was elevated in the AL, TB, and mainly the ALTB group in both liver and kidney of rats. Serum levels of AST and ALT were reduced by cigarette smoke exposure, independently of alcohol use. Serum creatinine levels increased after tobacco smoke exposure. On the other hand, TB and AL groups decreased serum urea levels, and their association restored that decrease. Absolute liver and kidney weights were lower in the cigarette smoke exposure rats. Lastly, body weight gain was lower in TB group and combined use restored it. Thus, we may infer that the use of alcohol, exposure to tobacco cigarette smoke or, mainly, their association promotes liver and kidney injuries, and this damage is related with biochemical changes in rats.

2.
Behav Pharmacol ; 30(6): 490-499, 2019 09.
Article in English | MEDLINE | ID: mdl-30724798

ABSTRACT

Few studies have explored the effects of the combined use of alcohol and cigarette in humans, despite its prevalence. Here we evaluated the effect of isolated and combined use on behaviors and neuronal parameters in rats. Male adult rats were divided into alcohol (AL, 2 g/kg, by oral gavage), cigarette smoke (TB, six cigarettes, by inhalation), combined use (ALTB), or control (CT, water by oral gavage and environmental air) groups, treated twice a day (09.00 and 14.00 h). After 4 weeks, the rats were tested in the open field for behavioral analysis and euthanized for brain volume estimation and counting of neurons in the hippocampus. All treatments increased locomotion, and this behavior was higher in the ALTB than TB group. Latency to exit from the central area was lower in the ALTB than in the AL or CT groups. Rearing behavior increased in TB and decreased in AL and ALTB rats. Combined ALTB rats significantly increased their grooming behavior. Only the AL group showed decreased neuron counts and increased brain volume. Our results show that the isolated and combined uses of alcohol and cigarette smoke have diverse effects on behavioral and neuronal parameters in rats after long-term treatment.


Subject(s)
Ethanol/adverse effects , Neurons/drug effects , Nicotine/adverse effects , Administration, Inhalation , Animals , Behavior, Animal/drug effects , Ethanol/administration & dosage , Hippocampus/drug effects , Male , Rats , Rats, Wistar , Smoking , Tobacco Products/adverse effects
3.
Psychopharmacology (Berl) ; 232(19): 3623-36, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26231496

ABSTRACT

RATIONALE: Alcohol addiction causes severe problems, and its deprivation may potentiate symptoms such as anxiety. Furthermore, ethanol is a neurotoxic agent that induces degeneration and the consequences underlying alcohol-mediated brain damage remain unclear. OBJECTIVES: This study assessed the behavioral changes during acute ethanol withdrawal periods and determined the levels of DNA damage and reactive oxygen species (ROS) in multiple brain areas. METHODS: Male Wistar rats were subjected to an oral ethanol self-administration procedure with a forced diet where they were offered 8% (v/v) ethanol solution for 21 days followed by five repeated 24-h cycles alternating between ethanol withdrawal and re-exposure. Control animals received an isocaloric control diet without ethanol. Behavioral changes were analyzed on ethanol withdrawal days in the open-field (OF) and elevated plus-maze (EPM) tests within the first 6 h of ethanol deprivation. The pre-frontal cortex, hypothalamus, striatum, hippocampus, and cerebellum were dissected for alkaline and neutral comet assays and for dichlorofluorescein ROS testing. RESULTS: The repeated intermittent ethanol access enhanced solution intake and alcohol-seeking behavior. Decreased exploratory activity was observed in the OF test, and the animals stretched less in the EPM test. DNA single-strand breaks and ROS production were significantly higher in all structures evaluated in the ethanol-treated rats compared with controls. CONCLUSIONS: The animal model of repeated intermittent ethanol access induced behavioral changes in rats, and this ethanol exposure model induced an increase in DNA single-strand breaks and ROS production in all brain areas. Our results suggest that these brain damages may influence future behaviors.


Subject(s)
Alcoholism/metabolism , Brain/drug effects , Brain/metabolism , DNA Damage/drug effects , Ethanol/administration & dosage , Substance Withdrawal Syndrome/metabolism , Age Factors , Alcoholism/complications , Animals , Anxiety/etiology , Anxiety/metabolism , DNA Damage/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Self Administration , Substance Withdrawal Syndrome/etiology
4.
Pharmacol Biochem Behav ; 103(2): 359-66, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22981694

ABSTRACT

Alterations in GABA(A) receptor expression have been associated with the allopregnanolone (3α-hydroxy-5α-pregnan-20-one; 3α,5α-THP) antidepressant-like effect in rats. The present study aimed to verify the effect of bilateral, intra-nucleus accumbens core (intra-AcbC) administration of the neurosteroid allopregnanolone on behaviors in the forced swim and grooming microstructure tests and in the δ and γ2 GABA(A) receptor subunit mRNA expression in right and left hippocampus of rats. The results of this study showed that bilateral, intra-AcbC allopregnanolone administration (5µg/rat) presented antidepressant-like activity in the forced swim test concomitant with an increase in climbing. Allopregnanolone at doses of 1.25 and 5µg/rat also decreased the percentage of correct transitions in the grooming microstructure test. Both δ and γ2 GABA(A) subunit expressions increased in the rat hippocampus after allopregnanolone intra-AcbC treatment. Our findings point to asymmetrical GABA(A) receptor expression changes in the hippocampus of animals treated with allopregnanolone. Further investigation should evaluate the antidepressant-like effect of allopregnanolone not only in other directly infused regions but also with respect to changes in other brain areas of the limbic system to understand allopregnanolone's mechanism of action.


Subject(s)
Behavior, Animal/drug effects , Depression/drug therapy , Hippocampus/drug effects , Nucleus Accumbens/drug effects , Pregnanolone/administration & dosage , Receptors, GABA-A/drug effects , Animals , Base Sequence , DNA Primers , Hippocampus/metabolism , Male , Pregnanolone/pharmacology , Pregnanolone/therapeutic use , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, GABA-A/genetics
5.
Eur J Pharmacol ; 684(1-3): 95-101, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22487059

ABSTRACT

Grooming behavior is an adaptation to a stressful environment that can vary in accordance with stress intensity. Direct and indirect GABA(A) receptor agonists decrease duration, frequency, incorrect transitions and uninterrupted bouts of grooming. Hormonal variation during the different phases of the estrous cycle of female rats also changes the grooming behavior. It is known that GABA(A) agonists and endogenous hormones change anxiety-like behaviors observed in the elevated plus maze test, a classical animal model of anxiety. This study was designed to determine the anxiolytic effect of clonazepam in female rats in different estrous phases and to correlate anxiety behaviors in the elevated plus maze and grooming microstructure tests. Our results show that female rats displayed higher anxiety-like behavior scores during the estrus and proestrus phases in the elevated plus maze and that clonazepam (0.25 mg/kg; i.p.) had an anxiolytic effect that was independent of the estrous phase. Grooming behaviors were higher in the proestrus phase but were decreased by clonazepam administration, independent of the estrous phase, demonstrating the anxiolytic effect of this drug in both animal models. Grooming behaviors were moderately associated with anxiolytic-like behaviors in the elevated plus maze test. Here, we describe the anxiolytic effect of clonazepam and the influence of estrous phase on anxiety. Moreover, we show that the grooming microstructure test is a useful tool for detecting anxiolytic-like behaviors in rats.


Subject(s)
Anti-Anxiety Agents/pharmacology , Clonazepam/pharmacology , Grooming/drug effects , Maze Learning/drug effects , Animals , Estrous Cycle/drug effects , Female , Grooming/physiology , Maze Learning/physiology , Rats , Rats, Wistar
6.
Mutat Res ; 703(2): 187-90, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20816849

ABSTRACT

Diabetes mellitus (DM) is a chronic hyperglycemic state. DM may be associated with moderate cognitive deficits and neurophysiologic/structural changes in the brain (diabetic encephalopathy). Psychiatric manifestations seem to accompany this encephalopathy, since the prevalence of depression in diabetic patients is much higher than in the general population, and clonazepam is being used to treat this complication. The excessive production of oxygen free radicals that may occur in diabetes induces a variety of lesions in macromolecules, including DNA. In this work, we analyzed DNA damage in leukocytes from streptozotocin-induced diabetic rats submitted to the forced swimming test. The DNA damage index was significantly elevated (DI=61.00 ± 4.95) in the diabetic group compared to the control group (34.00 ± 1.26). Significant reductions of the damage index were observed in diabetic animals treated with insulin (45.00 ± 1.82), clonazepam (52.00 ± 1.22), or both agents (39.00 ± 5.83, not significantly different from control levels). Insulin plus clonazepam can protect against DNA damage in stressed diabetic rats.


Subject(s)
Clonazepam/pharmacology , DNA Damage , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Insulin/pharmacology , Stress, Psychological/drug therapy , Animals , Clonazepam/therapeutic use , Comet Assay , Drug Therapy, Combination , Insulin/therapeutic use , Leukocytes/drug effects , Rats , Rats, Wistar , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...