Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 11(10): 6288-6302, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823093

ABSTRACT

An ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) of 20 anthelmintic drugs followed and detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed, optimized, and validated. The parameters affecting the anthelmintic extraction efficiencies such as selection of extraction solvent (ionic liquids), selection of disperser solvent, volume of extraction solvent, volume of disperser solvent, pH of the aqueous phase, extraction time, salt addition, and centrifugation time were optimized. Validation was conducted according to ISO/IEC 17025:2017 and Commission Implementing Regulation (EU) 2021/808 of 22 March 2021. Validation parameters such as calibration function, matrix effect, limit of detection (LOD), limit of quantification (LOQ), decision limit (CCα), accuracy, and precision were established. Coefficient of determination (R 2) values ranging from .99938 to .99995 were obtained using the matrix calibration curve spiked at 0, 0.25, 1.0, 1.5, and 2.0 times MRL. The LODs and LOQs were calculated using the standard deviation of the response and the slopes of the calibration curves ranged from 0.35 to 26.1 µg/kg and from 1.2 to 87.0 µg/kg, respectively, and were dependent on calibration range. The CCα values ranged from 23 to 1022.0 µg/kg and are also dependent on the MRL concentration levels. The coefficient of variation (CV) values calculated are within the reproducibility range of 16%-30% adapted from the Horwitz Equation CV = 2(1-0.5 log C) and ranged from 1.7% to 16.9%. The developed and validated and the standard QuEChERS method were compared. The IL-DLLME LC-MS/MS method was applied to 32 small stock (18 caprine [goat] and 14 ovine [sheep]) liver samples received from municipal abattoirs at Botswana National Veterinary Laboratory for the analysis of anthelmintic drug residues. The results obtained indicated that the anthelmintic drug residues were all below the detection capability, and therefore, the samples were passed as fit for human consumption.

2.
Environ Pollut ; 314: 120275, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36167166

ABSTRACT

Although pollutants pose environmental and human health risks, the majority are not routinely monitored and regulated. Organic pollutants emanate from a variety of sources, and can be classified depending on their chemistry and environmental fate. Classification of pollutants is important because it informs fate processes and apposite removal technologies. The occurrence of emerging contaminants (ECs) in water bodies is a source of environmental and human health concern globally. Despite being widely reported, data on the occurrence of ECs in South Africa are scarce. Specifically, ECS in wastewater in the Northern Cape in South Africa are understudied. In this study, various ECs were screened in water samples collected from three wastewater treatment plants (WWTPs) in the province. The ECs were detected using liquid chromatography coupled to high resolution Orbitrap mass spectrometry following Oasis HLB solid-phase extraction. The main findings were: (1) there is a wide variety of ECs in the WWTPs, (2) physico-chemical properties such as pH, total dissolved solids, conductivity, and dissolved organic content showed reduced values in the outlet compared to the inlet which confirms the presence of less contaminants in the treated wastewater, (3) specific ultraviolet absorbance of less than 2 was observed in the WWTPs samples, suggesting the presence of natural organic matter (NOM) that is predominantly non-humic in nature, (4) most of the ECs were recalcitrant to the treatment processes, (5) pesticides, recreational drugs, and analgesics constitute a significant proportion of pollutants in wastewater, and (6) NOM removal ranged between 35 and 90%. Consequently, a comprehensive database of ECs in wastewater in Sol Plaatje Municipality was created. Since the detected ECs pose ecotoxicological risks, there is a need to monitor and quantify ECs in WWTPs. These data are useful in selecting suitable monitoring and control strategies at WWTPs.


Subject(s)
Environmental Pollutants , Illicit Drugs , Pesticides , Water Pollutants, Chemical , Humans , Wastewater/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , South Africa , Pesticides/analysis , Environmental Pollutants/analysis , Water/analysis , Waste Disposal, Fluid
3.
Polymers (Basel) ; 13(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673368

ABSTRACT

Limited studies have been done on silk fibroins of wild silkworm species owing to their relative insolubility in many solvents. In this study, the solubility of Argema mimosae wild silk fibroin in different salts (LiBr, LiCl, Ca(NO3)2, and CaCl2) dissolved in formic acid under varying temperatures was investigated. The dissolution conditions under which the solubility was optimum were optimized using a central composite design approach. The optimum range for solvation of the fibroin were visualized using contour plots. The influence of temperature and salt concentration were found to significantly influence the solvation of the fibroin. Following the successful dissolution of the fibroin, the regenerated silk fibroin solutions were cast to obtain water insoluble films which were used in investigating optimum electrospinning conditions. Average nanofiber diameters in the 110-141 nm range were obtained under optimum electrospinning conditions. The silk forms were characterized using the FTIR, TGA, XRD, and SEM to understand their properties. The investigations revealed that formic acid-salt solvents were effective in the solvation of the wild silk fibroin. Some of the dissolution conditions induced mild effects on the silk fibroin while others were harsh. Furthermore, processing to nanofibers resulted in the degradation of the ß-sheets producing nanofibers rich in α-helices. However, post-treatment using methanol and water vapor were effective in restoring ß-sheet crystallinity.

4.
Article in English | MEDLINE | ID: mdl-30614373

ABSTRACT

In the current study, the removal of Cd(II), Pb(II) and Cu(II) ions from industrial effluent was investigated using powdered Moringa stenopetala seed husk. The surface functionality, morphology, crystallinity, thermal stability, the surface charge and surface area of the powdered Moringa stenopetala seed husk was studied using FTIR, SEM, XRD, TGA, zeta potential and BET, respectively. Processing parameters, namely contact time, adsorbent dosage, concentration, pH, agitation speed, temperature and particle size were investigated using the batch adsorption method. The maximum adsorption percentage for Cd(II), Pb(II) and Cu(II) ions from synthetic wastewater was found to be 99.1, 99.4 and 99.1%, compared to 95.3, 95.5 and 94.1%, respectively, for adsorption of these metal ions from real wastewater. The maximum adsorption capacity was found to be 52.63, 47.62 and 31.25 mg/g adsorbent for Cd(II), Pb(II) and Cu(II), respectively. The Freundlich isotherm provided a better fit for the adsorption equilibrium data than the Langmuir isotherm, while the kinetics were well defined by the pseudo-second-order model (R2 = 1). Furthermore, the positive value of the enthalpy change (ΔH) indicated that the adsorption of metal ions on the adsorbent was endothermic. The negative values of the Gibbs free energy change (ΔG) confirmed that the adsorption process on the surface of the adsorbent was spontaneous.


Subject(s)
Cadmium/analysis , Copper/analysis , Lead/analysis , Moringa/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Biodegradation, Environmental , Hydrogen-Ion Concentration , Kinetics , Seeds/chemistry , Temperature , Wastewater/chemistry
5.
Water Res ; 145: 231-247, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30142521

ABSTRACT

The therapeutic efficacy of antiretroviral drugs as well as challenges and side effects against the human immunodeficiency virus is well documented and reviewed. Evidence is available in literature indication that antiretrovirals are only partially transformed and become completely excreted from the human body in their original form and/or as metabolites in urine and feces. The possibility of massive release of antiretrovirals through human excreta that enters surface water through surface runoff and wastewater treatment plant effluents is now of environmental concern because the public might be experiencing chronic exposure to antiretrovirals. The primary concern of this review is limited data concerning environmental fate and ecotoxicity of antiretrovirals and their metabolites. The review aims to provide a comprehensive insight into the evaluation of antiretrovirals in environmental samples. The objective is therefore to assess the extent of analysis of antiretrovirals in environmental samples and also look at strategies including instrumentation and predictive models that have been reported in literature on the fate and ecotoxicological effects due to presence of antiretrovirals in different environmental compartments. The review also looks at current challenges and offers possible areas of exploration that could help minimize the presence of antiretrovirals in the environment.


Subject(s)
Environmental Monitoring , HIV Infections , Ecotoxicology , Humans , Wastewater
6.
Environ Sci Pollut Res Int ; 21(6): 4686-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352550

ABSTRACT

Nine metals (Fe, Cu, Mn, Ni, Cd, Pb, Hg, Cr, and Zn) were determined in soil and Digitaria eriantha plants within the vicinity of three coal power plants (Matla, Lethabo, and Rooiwal), using ICP-OES and GFAAS. The total metal concentration in soil ranged from 0.05 ± 0.02 to 1836 ± 70 µg g(-1), 0.08 ± 0.05 to 1744 ± 29 µg g(-1), and 0.07 ± 0.04 to 1735 ± 91 µg g(-1) in Matla, Lethabo, and Rooiwal, respectively. Total metal concentration in the plant (D. eriantha) ranged from 0.005 ± 0.003 to 535 ± 43 µg g(-1) in Matla, 0.002 ± 0.001 to 400 ± 269 µg g(-1) in Lethabo, and 0.002 ± 0.001 to 4277 ± 201 µg g(-1) in Rooiwal. Accumulation factors (A) of less than 1 (i.e., 0.003 to 0.37) at all power plants indicate a low transfer of metal from soil to plant (excluder). Enrichment factor values obtained (2.4-5.0) indicate that the soils are moderately enriched with the exception of Pb that had significant enrichment of 20. Geo-accumulation index (I-geo) values of metals indicate that the soils are moderately polluted (0.005-0.65), except for Pb that showed moderate to strong pollution (1.74-2.53).


Subject(s)
Digitaria/chemistry , Environmental Monitoring , Metals, Heavy/analysis , Power Plants , Soil Pollutants/analysis , Soil/chemistry , Coal , Environmental Pollution/statistics & numerical data , South Africa
7.
Environ Monit Assess ; 185(3): 2073-82, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22661359

ABSTRACT

The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of three South African coal-fired power plants were determined by gas chromatography-mass spectrometry. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/Phen + Anth) were used to provide reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 µg g(-1), a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 µg g(-1) for significantly contaminated site. Calculated values of Phen/Phen + Anth ratio were 0.48 ± 0.08, 0.44 ± 0.05, and 0.38 + 0.04 for Matla, Lethabo, and Rooiwal, respectively. Flouranthene/fluoranthene + pyrene (Flan/Flan + Pyr) were found to be 0.49 ± 0.03 for Matla, 0.44 ± 0.05 for Lethabo, and 0.53 ± 0.08 for Rooiwal. Such values indicate a pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. A good correlation existed between most of the PAHs implying that these compounds were emitted from similar sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25 indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can therefore be concluded that the soils were contaminated with PAHs originating from coal-fired power stations.


Subject(s)
Coal , Polycyclic Aromatic Hydrocarbons/analysis , Power Plants , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring , Environmental Pollution/statistics & numerical data , Gas Chromatography-Mass Spectrometry , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...