Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Aging (Albany NY) ; 15(23): 14263-14291, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38095636

ABSTRACT

BACKGROUND: Xuanwei lung cancer (XWLC) is well-known for its high incidence and mortality. However, the molecular mechanism is still unclear. METHODS: We performed a comprehensive transcriptomic, proteomic, and phosphoproteomic characterization of tumors and matched normal adjacent tissues from three XWLC patients with lung adenocarcinoma (LUAD). RESULTS: Integrated transcriptome and proteome analysis revealed dysregulated molecules and pathways in tumors and identified enhanced metabolic-disease coupling. Non-coding RNAs were widely involved in post-transcriptional regulatory mechanisms to coordinate the progress of LUAD and partially explained the molecular differences between RNA and protein expression patterns. Phosphoproteome provided evidence support for new phosphate sites, reporting the potential roles of core kinase family members and key kinase pathways involved in metabolism, immunity, and homeostasis. In addition, by comparing with the previous LUAD researches, we emphasized the higher degree of oxidative phosphorylation in Xuanwei LUAD and pointed that VIPR1 deficiency aggravated metabolic dysfunction. CONCLUSION: Our integrated multi-omics analysis provided a powerful resource for a systematic understanding of the molecular structure of XWLC and proposed therapeutic opportunities based on redox metabolism.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Multiomics , Proteomics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , China , Gene Expression Regulation, Neoplastic
3.
Front Cell Infect Microbiol ; 12: 971933, 2022.
Article in English | MEDLINE | ID: mdl-36250053

ABSTRACT

During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.


Subject(s)
COVID-19 , Nucleic Acids , Tuberculosis, Pleural , Tuberculosis, Pulmonary , Biofilms , Humans , Lung/pathology , Pandemics , SARS-CoV-2 , Tuberculosis, Pulmonary/pathology
4.
Front Immunol ; 13: 827953, 2022.
Article in English | MEDLINE | ID: mdl-35479075

ABSTRACT

Background: Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology. The lung microbiome is getting rising attention in carcinogenesis. The present work sought to investigate the microbiome in lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution (IAP); and further, to compare host gene expression patterns with their microbiome for potential links. Methods: Tissue sample pairs (cancer and adjacent nonmalignant tissue) were used for 16S rRNA (microbiome) and RNA-seq (host gene expression). Subgroup microbiome diversities and their matched gene expression patterns were analyzed. Significantly enriched taxa were screened out, based on different clinicopathologic characteristics. Results: Our FLC microbiome seemed to be smaller, low-diversity, and inactive to change; we noted microbiome differences in gender, age, blood type, anatomy site, histology type, TNM stage as well as IAP and smoking conditions. We also found smoking and IAP dramatically decreased specific-OTU biodiversity, especially in normal lung tissue. Intriguingly, enriched microbes were in three categories: opportunistic pathogens, probiotics, and pollutant-detoxication microbes; this third category involved Sphingomonas, Sphingopyxis, etc. which help degrade pollutants, but may also cause epithelial damage and chronic inflammation. RNA-seq highlighted IL17, Ras, MAPK, and Notch pathways, which are associated with carcinogenesis and compromised immune system. Conclusions: The lung microbiome can play vital roles in carcinogenesis. FLC and IAP subjects were affected by fragile lung epithelium, vulnerable host-microbes equilibrium, and dysregulated immune surveillance and response. Our findings provided useful information to study the triple interplay among environmental carcinogens, population genetic background, and diversified lung microbiome.


Subject(s)
Carcinogens, Environmental , Lung Neoplasms , Microbiota , Carcinogenesis/pathology , Carcinogens, Environmental/pharmacology , Gene Expression , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Microbiota/physiology , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...