Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555674

ABSTRACT

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Subject(s)
Biomass , Charcoal , Iron , Peracetic Acid , Water Pollutants, Chemical , Water Purification , Peracetic Acid/chemistry , Charcoal/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Nitrogen/chemistry , Naproxen/chemistry , Catalysis , Decontamination/methods , Adsorption
2.
Sci Rep ; 10(1): 12999, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747692

ABSTRACT

Groundwater treatment sludge is a type of solid waste with 9.0-28.9% wt.% Fe content and is precipitated in large quantity from backwash wastewater in groundwater treatment. The sludge is mainly composed of fine particles containing Fe, Si and Al oxides, such as ferrihydrite, quartz and boehmite. The Fe oxides mostly originate from the oxidation of ferrous Fe in groundwater, whilst the silicate/aluminium compounds mainly originate from the broken quartz sand filter in the backwash step. In general, the sludge is firstly coagulated, dewatered by filter pressing and finally undergoes harmless solidification before it is sent to landfills. However, this process is costly (approximately US$66.1/t) and complicated. In this study, groundwater treatment sludge was effectively recycled to prepare novel erdite-bearing particles via a one-step hydrothermal method by adding only Na2S·9H2O. After hydrothermal treatment, the quartz and boehmite of the sludge were dissolved and recrystallised to sodalite, whilst ferrihydrite was converted to an erdite nanorod at 160 °C and a hematite at 240 °C. SP160 was prepared as fine nanorod particles with 200 nm diameter and 2-5 µm length at a hydrothermal temperature of 160 °C. Nearly 100% OTC and its derivatives in pharmaceutical manufacture wastewater were removed by adding 0.1 g SP160. The major mechanism for the removal was the spontaneous hydrolysis of erdite in SP160 to generate Fe oxyhydroxide and use many hydroxyl groups for coordinating OTC and its derivatives. This study presents a novel method for the resource reutilisation of waste groundwater treatment sludge and reports efficient erdite-bearing particles for pharmaceutical manufacture wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...