Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 13(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273912

ABSTRACT

Biomass pyrolysis by-products, such as biochar (BC) and wood vinegar (WV), are widely used as soil conditioners and efficiency enhancers in agriculture. A pot experiment was conducted to examine the effects of WV, both alone and in combination with BC, on soil properties in mildly saline soil and on cotton stress tolerance. The results demonstrated that BC and WV application, either individually or together, increased soil nutrient content. The combined application was more effective than the individual applications, resulting in a 5.18-20.12% increase in organic matter, a 2.65-15.04% increase in hydrolysable nitrogen, a 2.23-58.05% increase in effective phosphorus, and a 2.71-29.38% increase in quick-acting potassium. Additionally, the combined application of WV and BC led to greater improvements in cotton plant height, net photosynthetic rate (Pn), leaf nitrate reductase (NR), superoxide dismutase (SOD), and catalase (CAT) activities compared to the application of BC or WV alone. The enhancements in this study varied across different parameters. Plant height showed an increase of 14.32-21.90%. Net photosynthetic rate improved by 13.56-17.60%. Leaf nitrate reductase increased by 5.47-37.79%. Superoxide dismutase and catalase showed improvements of 5.82-64.95% and 10.36-71.40%, respectively (p < 0.05). Moreover, the combined treatment outperformed the individual applications of WV and BC, resulting in a significant decrease in MDA levels by 2.47-51.72% over the experimental period. This combined treatment ultimately enhanced cotton stress tolerance. Using the entropy weight method to analyze the results, it was concluded that the combined application of WV and BC could enhance soil properties in mildly saline soils, increase cotton resistance, and hold significant potential for widespread application.

2.
Plants (Basel) ; 13(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273942

ABSTRACT

Soil salinization, a significant global challenge, threatens sustainable development. This study explores the potential of magnetized ionized water irrigation and Bacillus subtilis application to mitigate this issue. The former method is hypothesized to enhance soil salt leaching, while the latter is expected to improve soil nutrient availability, thereby increasing microbial diversity. To address the unclear impact of these interventions on soil quality and cotton productivity, this study employs four different experimental methods: magnetized ionized water irrigation (M), application of 45 kg ha-1B. subtilis (B), a combination of 45 kg ha-1B. subtilis with magnetized ionized water irrigation (MB), and a control treatment with no intervention (CK). This study aims to clarify the effects of these treatments on soil bulk density (BD), field capacity (FC), salinity and alkalinity, nutrient content, microbial activity, and cotton crop yield and quality. Additionally, it aims to evaluate the efficacy of these methods in improving saline soil conditions by developing a soil quality index. The results showed that using magnetized ionized water for irrigation and applying B. subtilis, either alone or together, can effectively lower soil pH and salt levels, enhance microbial diversity and abundance, and improve the yield and quality of cotton. Notably, B. subtilis application significantly decreased BD and enhanced FC and nutrient content (p < 0.05). A correlation was found where soil nutrient content decreased as pH and salt content increased. Furthermore, a strong correlation was observed between the major soil bacteria and fungi with BD, FC, and salt content. Comparatively, M, B, and MB significantly boosted (p < 0.01) the soil quality index by 0.21, 0.52, and 0.69 units, respectively, and increased (p < 0.05) cotton yield by 5.7%, 14.8%, and 20.1% compared to CK. Therefore, this research offers eco-friendly and efficient methods to enhance cotton production capacity in saline soil.

3.
Int J Mol Sci ; 25(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39273198

ABSTRACT

Drought stress (DS) is one of the abiotic stresses that plants encounter commonly in nature, which affects their life, reduces agricultural output, and prevents crops from growing in certain areas. To enhance plant tolerance against DS, abundant exogenous substances (ESs) have been attempted and proven to be effective in helping plants relieve DS. Understanding the effect of each ES on alleviation of plant DS and mechanisms involved in the DS relieving process has become a research focus and hotspot that has drawn much attention in the field of botany, agronomy, and ecology. With an extensive and comprehensive review and summary of hundred publications, this paper groups various ESs based on their individual effects on alleviating plant/crop DS with details of the underlying mechanisms involved in the DS-relieving process of: (1) synthesizing more osmotic adjustment substances; (2) improving antioxidant pathways; (3) promoting photosynthesis; (4) improving plant nutritional status; and (5) regulating phytohormones. Moreover, a detailed discussion and perspective are given in terms of how to meet the challenges imposed by erratic and severe droughts in the agrosystem through using promising and effective ESs in the right way and at the right time.


Subject(s)
Droughts , Photosynthesis , Stress, Physiological , Plant Growth Regulators/metabolism , Plants/metabolism , Antioxidants/metabolism , Crops, Agricultural , Plant Physiological Phenomena
4.
J Agric Food Chem ; 72(1): 65-79, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38135656

ABSTRACT

Plant flooding/waterlogging stress (FWS) can be a threat to food security worldwide due to climate change. To mitigate its potential devastation, numerous exogenous chemicals (ECs) have been used to demonstrate their effectiveness on alleviating FWS for the last 20 years. This review has summarized the most recent findings on use of various ECs as either nutrients or regulatory substances on crop plants under FWS and their roles involved in improving root respiration of seedlings, optimizing nutritional status, synthesizing osmotic regulators, enhancing the activity of antioxidant enzymes, adjusting phytohormone levels, maintaining photosynthetic systems, and activating flood-tolerance related gene expressions. The effect of ESs on alleviating plants under FWS proves to be beneficial and useful but rather limited unless they are applied on appropriate crops, at the right time, and with optimized methods. Further research should be focused on use of ESs in field settings and on their potential synergetic effect for more FWS tolerance.


Subject(s)
Floods , Plant Growth Regulators , Seedlings , Photosynthesis , Crops, Agricultural
5.
Front Plant Sci ; 14: 1165856, 2023.
Article in English | MEDLINE | ID: mdl-37469780

ABSTRACT

Introduction: Due to the shortage of land and water resource, optimization of systems for production in commercial greenhouses is essential for sustainable vegetable supply. The performance of lettuce productivity and the economic benefit in greenhouses using a soil-based system (SBS) and a hydroponic production system (HPS) were compared in this study. Methods: Experiments were conducted in two identical greenhouses over two growth cycles (G1 and G2). Three treatments of irrigation volumes (S1, S2, and S3) were evaluated for SBS while three treatments of nutrient solution concentration (H1, H2, and H3) were evaluated for HPS; the optimal levels from each system were then compared. Results and discussion: HPS was more sensitive to the effects of environmental temperature than SBS because of higher soil buffer capacity. Compared with SBS, higher yield (more than 134%) and higher water productivity (more than 50%) were observed in HPS. We detected significant increases in ascorbic acid by 28.31% and 16.67% and in soluble sugar by 57.84% and 32.23% during G1 and G2, respectively, compared with SBS. However, nitrate accumulated in HPS-grown lettuce. When the nutrient solution was replaced with fresh water 3 days before harvest, the excess nitrate content of harvested lettuce in HPS was removed. The initial investment and total operating cost in HPS were 21.76 times and 47.09% higher than those in SBS, respectively. Consideration of agronomic, quality, and economic indicators showed an overall optimal performance of the H2 treatment. These findings indicated that, in spite of its higher initial investment and requirement of advanced technology and management, HPS was more profitable than SBS for commercial lettuce production.

6.
PLoS One ; 18(2): e0281846, 2023.
Article in English | MEDLINE | ID: mdl-36821566

ABSTRACT

Exogenous γ-aminobutyric acid (GABA) has been used and regarded as a potential enhancer for plant resistance against various biotic or abiotic attackers in the crop production, especially as a promising alleviator against salt stress. In order to determine whether GABA is truly effective in promoting rice resistance under a certain level of salt stress or not and to evaluate its effect on the growth and some physiological responses of two Japonica rice varieties under salt stress. 3-leaf rice seedlings germinated from seeds were cultivated in a separate hydroponic cup with a nutrient solution that was salinized with 0, 25, 50, or 75 mmol K+ of NaCl. A 4 mmol L-1 GABA solution or water were sprayed onto leaves once a day for 8 days prior to an assessment of the seedling growth, the growth indices, root activities and three antioxidant enzyme activities in leaves were measured. Data analyses indicated that as the salt concentration increased, the plant height and the leaf area of both rice varieties decreased, while the dead leaf rate, weight ratio of the dry- and fresh-roots, superoxide dismutase (SOD) and peroxidase (POD) activities increased. Under the same saline conditions, the root activities and the leaf ascorbate peroxidase (APX) activity were enhanced at a low NaCl concentration but reduced when the salt concentration was high. A foliar application of GABA daily on both rice varieties for over a week under 3 different salinized treatments as compared with the corresponding treatments sprayed with water resulted in an enhanced effect on plant height increment by 1.7-32.4%, a reduction of dead leaf rate by 1.6-36.4%, a decline of root dry weight by 9.3-30.9% respectively, and an increment in root activities by 8.1-114.5%, and POD, SOD and APX enzyme activities increased by 5.0-33.3%, 4.1-18.5%, and 7.2-64.4% respectively. However, two rice varieties showed a significant difference in response to various salinized levels. Overall results of this study demonstrate that the application of exogenous GABA on the leaves of rice seedlings under salt stress has improved rice salt tolerance, which should provide a sufficient information for ultimately making it possible to grow rice in salinized soil.


Subject(s)
Oryza , Seedlings , Sodium Chloride/pharmacology , Salt Stress , Antioxidants/pharmacology , Superoxide Dismutase/pharmacology , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL