Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Pollut ; 243(Pt A): 766-776, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30228068

ABSTRACT

Trichloroethylene (TCE) is one of the most common groundwater contaminants in the United States; however clean-up efforts are a challenge due to its physical and chemical properties. TCE and several of its degradation products were detected in the groundwater of the Beaver Dam Road Landfill site (Beltsville, MD) at concentrations above accepted maximum contaminant levels. A permeable reactive barrier (i.e., biowall) was installed to remediate the groundwater. Microbial infiltration and colonization of the biowall with native site bacteria was expected to occur. An array of molecular biological tools was applied to survey the microbial community for presence of organohalide-respiring microorganisms at the site. Microorganisms belonging to methanogens, acetogens, sulfate-reducing bacteria, and chlorinated aliphatic hydrocarbon-metabolizing bacteria were identified, thus making way for the application of the microbial populations in the biowall bioaugmentation efforts. In concomitant laboratory studies, molecular approaches were used to monitor continuously-fed column reactors containing saturated biowall material spiked with a commercially-available, Dehalococcoides-containing culture (SDC-9), with or without zero-valent iron (ZVI) shavings. The column without ZVI had the highest abundance of Dehalococcoides spp. (2.7 × 106 cells g-1 material, S.D. = 3.8 × 105 cells g-1 material), while the addition of ZVI did not affect the overall population. Although the addition of ZVI and biostimulation did change ratios of the Dehalococcoides strains, the results suggests that if ZVI would be applied as a biowall material amendment, biostimulation would not be required to maintain a Dehalococcoides population. These experimental results will be utilized in future remediation and/or biowall expansion plans to utilize the natural resources most effectively at the biowall site.


Subject(s)
Biodegradation, Environmental , Chloroflexi/metabolism , Groundwater/chemistry , Trichloroethylene/metabolism , Water Pollutants, Chemical/metabolism , Halogenation , Iron/chemistry , Water Pollutants, Chemical/analysis
2.
Environ Sci Pollut Res Int ; 25(9): 8735-8746, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29327189

ABSTRACT

Trichloroethylene (TCE) is a highly effective industrial degreasing agent and known carcinogen. It was frequently buried improperly in landfills and has subsequently become one of the most common groundwater and soil contaminants in the USA. A common strategy to remediate TCE-contaminated sites and to prevent movement of the TCE plumes into waterways is to construct biowalls which consist of biomaterials and amendments to enhance biodegradation. This approach was chosen to contain a TCE plume emanating from a closed landfill in Maryland. However, predicting the effectiveness of biowalls is often site specific. Therefore, we conducted an extensive series of batch reactor studies at 12 °C as opposed to the typical room temperature to examine biowall fill-material combinations including the effects of zero-valent iron (ZVI) and glycerol amendments. No detectable TCE was observed after several months in the laboratory study when using the unamended 4:3 mulch-to-compost combination. In the constructed biowall, this mixture reduced the upstream TCE concentration by approximately 90% and generated ethylene downstream, an indication of successful reductive dechlorination. However, the more toxic degradation product vinyl chloride (VC) was also detected downstream at levels approximately ten times greater than the maximum contaminant level. This indicates that incomplete degradation also occurred. In the laboratory, ZVI reduced VC formation. A hazard quotient was calculated for the landfill site with and without the biowall. The addition of the biowall decreased the hazard quotient by 88%.


Subject(s)
Bioreactors , Groundwater/chemistry , Plant Leaves/chemistry , Trichloroethylene/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Adsorption , Biodegradation, Environmental , Glycerol/chemistry , Iron/chemistry , Vinyl Chloride/analysis
3.
Article in English | MEDLINE | ID: mdl-26030685

ABSTRACT

The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.


Subject(s)
Archaea/drug effects , Biodegradation, Environmental/drug effects , Groundwater/chemistry , Groundwater/microbiology , Iron/toxicity , Nanoparticles/toxicity , Trichloroethylene/chemistry , Maryland , Soil Microbiology
4.
Sci Total Environ ; 430: 270-9, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22633186

ABSTRACT

Row-crop and poultry production have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined the effects of land use, subwatershed characteristics, and climatic conditions on the water quality parameters of a subwatershed in the Choptank River watershed. The catchments within the subwatershed were defined using advanced remotely-sensed data and current geographic information system processing techniques. Water and sediment samples were collected in May-October 2009 and April-June 2010 under mostly baseflow conditions and analyzed for select bacteria, nitrate-N, ammonium-N, total arsenic, total phosphorus (TP), orthophosphate (ortho-P), and particle-phase phosphorus (PP); n=96 for all analytes except for arsenic, n=136, and for bacteria, n=89 (aqueous) and 62 (sediment). Detections of Enterococci and Escherichia coli concentrations were ubiquitous in this subwatershed and showed no correlation to location or land use, however larger bacterial counts were observed shortly after precipitation. Nitrate-N concentrations were not correlated with agricultural lands, which may reflect the small change in percent agriculture and/or the similarity of agronomic practices and crops produced between catchments. Concentration data suggested that ammonia emission and possible deposition to surface waters occurred and that these processes may be influenced by local agronomic practices and climatic conditions. The negative correlation of PP and arsenic concentrations with percent forest was explained by the stronger signal of the head waters and overland flow of particulate phase analytes versus dissolved phase inputs from groundwater. Service roadways at some poultry production facilities were found to redirect runoff from the facilities to neighboring catchment areas, which affected water quality parameters. Results suggest that in this subwatershed, catchments with poultry production facilities are possible sources for arsenic and PP as compared to catchment areas where these facilities were not present.


Subject(s)
Rivers/chemistry , Rivers/microbiology , Water Pollutants, Chemical/analysis , Water Quality , Agriculture , Arsenic/analysis , Environmental Monitoring , Human Activities , Humans , Maryland , Nitrogen/analysis , Phosphorus/analysis , Seasons , Water Pollutants, Chemical/chemistry
5.
Sci Total Environ ; 409(19): 3866-78, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21733565

ABSTRACT

Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R(2)=0.56) and negatively with percent forest (R(2)=0.60). Concentrations were greater (p=0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 µg/L and 0.19 µg/L) were also greater (p=0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R(2)=0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and MESA (2-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid) were also analyzed. These findings will assist efforts in targeting implementation of conservation practices to the most environmentally-critical areas within watersheds to achieve water quality improvements in a cost-effective manner.


Subject(s)
Herbicides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Acetamides/analysis , Atrazine/analysis , Environmental Monitoring , Herbicides/chemistry , Maryland , Nitrates/analysis , Pesticide Residues/analysis , Water Pollutants, Chemical/chemistry , Water Quality , Water Supply
6.
J Bacteriol ; 189(22): 8290-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17601783

ABSTRACT

Biofilms exist in a variety of habitats that are routinely or periodically not saturated with water, and residents must integrate cues on water abundance (matric stress) or osmolarity (solute stress) into lifestyle strategies. Here we examine this hypothesis by assessing the extent to which alginate production by Pseudomonas putida strain mt-2 and by other fluorescent pseudomonads occurs in response to water limitations and how the presence of alginate in turn influences biofilm development and stress tolerance. Total exopolysaccharide (EPS) and alginate production increased with increasing matric, but not solute, stress severity, and alginate was a significant component, but not the major component, of EPS. Alginate influenced biofilm architecture, resulting in biofilms that were taller, covered less surface area, and had a thicker EPS layer at the air interface than those formed by an mt-2 algD mutant under water-limiting conditions, properties that could contribute to less evaporative water loss. We examined this possibility and show that alginate reduces the extent of water loss from biofilm residents by using a biosensor to quantify the water potential of individual cells and by measuring the extent of dehydration-mediated changes in fatty acid composition following a matric or solute stress shock. Alginate deficiency decreased survival of desiccation not only by P. putida but also by Pseudomonas aeruginosa PAO1 and Pseudomonas syringae pv. syringae B728a. Our findings suggest that in response to water-limiting conditions, pseudomonads produce alginate, which influences biofilm development and EPS physiochemical properties. Collectively these responses may facilitate the maintenance of a hydrated microenvironment, protecting residents from desiccation stress and increasing survival.


Subject(s)
Biofilms/growth & development , Pseudomonas putida/metabolism , Water/metabolism , Alginates , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Environment , Gene Expression Regulation, Bacterial , Glucuronic Acid/biosynthesis , Hexuronic Acids , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas putida/cytology , Pseudomonas putida/genetics , Pseudomonas syringae/genetics , Pseudomonas syringae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...