Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34789571

ABSTRACT

Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant's shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.


Subject(s)
Gravitropism/physiology , Infertility , Plant Shoots/physiology , Senecio/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Arabidopsis Proteins , Australia , Genetic Variation , Indoleacetic Acids/metabolism , Phenotype , Selection, Genetic , Senecio/genetics , Sulfurtransferases
2.
Mol Ecol ; 26(14): 3687-3699, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429828

ABSTRACT

The build-up of the phenotypic differences that distinguish species has long intrigued biologists. These differences are often inherited as stable polymorphisms that allow the cosegregation of adaptive variation within species, and facilitate the differentiation of complex phenotypes between species. It has been suggested that the clustering of adaptive loci could facilitate this process, but evidence is still scarce. Here, we used QTL analysis to study the genetic basis of phenotypic differentiation between coastal populations of the Australian wildflower Senecio lautus. We found that a genomic region consistently governs variation in several of the traits that distinguish these contrasting forms. Additionally, some of the taxon-specific traits controlled by this QTL cluster have evolved repeatedly during the adaptation to the same habitats, suggesting that it could mediate divergence between locally adapted forms. This cluster contains footprints of divergent natural selection across the range of S. lautus, which suggests that it could have been instrumental for the rapid diversification of this species.


Subject(s)
Genome, Plant , Quantitative Trait Loci , Selection, Genetic , Senecio/genetics , Australia , Genetic Variation , Genomics , Phenotype
3.
Mol Breed ; 36: 13, 2016.
Article in English | MEDLINE | ID: mdl-26869849

ABSTRACT

Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious, global, disease of peanut (Arachis hypogaea L.), but it is especially destructive in China. Identification of DNA markers linked to the resistance to this disease will help peanut breeders efficiently develop resistant cultivars through molecular breeding. A F2 population, from a cross between disease-resistant and disease-susceptible cultivars, was used to detect quantitative trait loci (QTL) associated with the resistance to this disease in the cultivated peanut. Genome-wide SNPs were identified from restriction-site-associated DNA sequencing tags using next-generation DNA sequencing technology. SNPs linked to disease resistance were determined in two bulks of 30 resistant and 30 susceptible plants along with two parental plants using bulk segregant analysis. Polymorphic SSR and SNP markers were utilized for construction of a linkage map and for performing the QTL analysis, and a moderately dense linkage map was constructed in the F2 population. Two QTL (qBW-1 and qBW-2) detected for resistance to BW disease were located in the linkage groups LG1 and LG10 and account for 21 and 12 % of the bacterial wilt phenotypic variance. To confirm these QTL, the F8 RIL population with 223 plants was utilized for genotyping and phenotyping plants by year and location as compared to the F2 population. The QTL qBW-1 was consistent in the location of LG1 in the F8 population though the QTL qBW-2 could not be clarified due to fewer markers used and mapped in LG10. The QTL qBW-1, including four linked SNP markers and one SSR marker within 14.4-cM interval in the F8, was closely related to a disease resistance gene homolog and was considered as a candidate gene for resistance to BW. QTL identified in this study would be useful to conduct marker-assisted selection and may permit cloning of resistance genes. Our study shows that bulk segregant analysis of genome-wide SNPs is a useful approach to expedite the identification of genetic markers linked to disease resistance traits in the allotetraploidy species peanut.

4.
PLoS One ; 9(4): e93975, 2014.
Article in English | MEDLINE | ID: mdl-24705617

ABSTRACT

Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23-33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43-64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci--due, for example, to reticulate evolution or lineage sorting--are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23-33 million year-old clade.


Subject(s)
Phylogeny , Quercus/genetics , Base Sequence , Cluster Analysis , Computational Biology , Expressed Sequence Tags , High-Throughput Nucleotide Sequencing , Likelihood Functions , Models, Genetic , Molecular Sequence Data , North America , Quercus/classification , Restriction Mapping , Sequence Homology , Software
5.
New Phytol ; 201(4): 1227-1239, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24308815

ABSTRACT

• Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. • We generated over 100,000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. • Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10,000-20,000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. • Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible.


Subject(s)
Biomass , Cell Wall/metabolism , Genome-Wide Association Study , Poaceae/cytology , Poaceae/genetics , Quantitative Trait, Heritable , DNA, Plant/genetics , Genetic Markers , Genome, Plant/genetics , Genotype , Geography , Phenotype , Polymorphism, Single Nucleotide/genetics , Population Dynamics , Principal Component Analysis , Restriction Mapping , Sequence Analysis, DNA
6.
BMC Genomics ; 14: 556, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23947483

ABSTRACT

BACKGROUND: Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initiative, we report on the process of SNP discovery through reductive genome sequencing and local assembly of six diverse sunflower inbred lines that represent oil as well as confection types. RESULTS: A combination of Restriction site Associated DNA Sequencing (RAD-Seq) protocols and Illumina paired-end sequencing chemistry generated high quality 89.4 M paired end reads from the six lines which represent 5.3 GB of the sequencing data. Raw reads from the sunflower line, RHA 464 were assembled de novo to serve as a framework reference genome. About 15.2 Mb of sunflower genome distributed over 42,267 contigs were obtained upon assembly of RHA 464 sequencing data, the contig lengths ranged from 200 to 950 bp with an N50 length of 393 bp. SNP calling was performed by aligning sequencing data from the six sunflower lines to the assembled reference RHA 464. On average, 1 SNP was located every 143 bp of the sunflower genome sequence. Based on several filtering criteria, a final set of 16,467 putative sequence variants with characteristics favorable for Illumina Infinium Genotyping Technology (IGT) were mined from the sequence data generated across six diverse sunflower lines. CONCLUSION: Here we report the molecular and computational methodology involved in SNP development for a complex genome like sunflower lacking reference assembly, offering an attractive tool for molecular breeding purposes in sunflower.


Subject(s)
Helianthus/genetics , Polymorphism, Single Nucleotide , Breeding , Contig Mapping , DNA, Plant/genetics , Genome, Plant , Restriction Mapping , Sequence Analysis, DNA
7.
Mol Ecol ; 22(3): 842-55, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22967258

ABSTRACT

Recent advances in population genomics have triggered great interest in the genomic landscape of divergence in taxa with 'porous' species boundaries. One important obstable of previous studies of this topic was the low genomic coverage achieved. This issue can now be overcome by the use of 'next generation' or short-read DNA-sequencing approaches capable of assaying many thousands of single nucleotide polymorphisms (SNPs) in divergent species. We have scanned the 'porous' genomes of Populus alba and Populus tremula, two ecologically divergent hybridizing forest trees, using >38,000 SNPs assayed by restriction site associated DNA (RAD) sequencing. Windowed analyses indicate great variation in genetic divergence (e.g. the proportion of fixed SNPs) between species, and these results are unlikely to be strongly biased by genomic features of the Populus trichocarpa reference genome used for SNP calling. Divergence estimates were significantly autocorrelated (P < 0.01; Moran's I up to 0.6) along 11 of 19 chromosomes. Many of these autocorrelations involved low divergence blocks, thus suggesting that allele sharing was caused by recurrent gene flow rather than shared ancestral polymorphism. A conspicuous low divergence block of three megabases was detected on chromosome XIX, recently put forward as an incipient sex chromosome in Populus, and was largely congruent with introgression of mapped microsatellites in two natural hybrid zones (N > 400). Our results help explain the origin of the 'genomic mosaic' seen in these taxa with 'porous' genomes and suggest rampant introgression or extensive among-species conservation of an incipient plant sex chromosome. RAD sequencing holds great promise for detecting patterns of divergence and gene flow in highly divergent hybridizing species.


Subject(s)
Gene Flow , Genomics/methods , Polymorphism, Single Nucleotide , Populus/genetics , Chromosomes, Plant , DNA, Plant/genetics , Genome, Plant , Hybridization, Genetic , Microsatellite Repeats , Populus/classification , Sequence Analysis, DNA
8.
BMC Genomics ; 12: 4, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21205322

ABSTRACT

BACKGROUND: Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL). RESULTS: Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines--the "dominant" and "recessive" marker stocks--and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the Hordeum genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (ZEO) and the VRS1 gene, which determines the two-row and six-row germplasm groups of barley. CONCLUSIONS: We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in de novo genome assembly, development of ultra-high density genetic maps and association mapping.


Subject(s)
Hordeum/genetics , Quantitative Trait Loci , Chromosome Mapping , Expressed Sequence Tags , Genome, Plant , Polymorphism, Single Nucleotide
9.
Proc Natl Acad Sci U S A ; 104(36): 14306-11, 2007 Sep 04.
Article in English | MEDLINE | ID: mdl-17726110

ABSTRACT

Drosophila neuroblasts divide asymmetrically by aligning their mitotic spindle with cortical cell polarity to generate distinct sibling cell types. Neuroblasts asymmetrically localize Galphai, Pins, and Mud proteins; Pins/Galphai direct cortical polarity, whereas Mud is required for spindle orientation. It is currently unknown how Galphai-Pins-Mud binding is regulated to link cortical polarity with spindle orientation. Here, we show that Pins forms a "closed" state via intramolecular GoLoco-tetratricopeptide repeat (TPR) interactions, which regulate Mud binding. Biochemical, genetic, and live imaging experiments show that Galphai binds to the first of three Pins GoLoco motifs to recruit Pins to the apical cortex without "opening" Pins or recruiting Mud. However, Galphai and Mud bind cooperatively to the Pins GoLocos 2/3 and tetratricopeptide repeat domains, respectively, thereby restricting Pins-Mud interaction to the apical cortex and fixing spindle orientation. We conclude that Pins has multiple activity states that generate cortical polarity and link it with mitotic spindle orientation.


Subject(s)
Blastomeres/metabolism , Cell Polarity , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Dissociation Inhibitors/metabolism , Neurons/metabolism , Spindle Apparatus/metabolism , Animals , Blastomeres/cytology , Cell Cycle Proteins , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Gene Expression Regulation, Developmental , Guanine Nucleotide Dissociation Inhibitors/genetics , Larva/cytology , Larva/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Protein Binding
10.
Biol Reprod ; 75(2): 189-96, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16687648

ABSTRACT

A-kinase anchor proteins (AKAPs) spatially restrict cAMP-dependent protein kinase by tethering it to various cellular structures. In the polarized sperm cell, various compartmentalized functions, such as motility generated by the flagellum, are modulated by cAMP-dependent protein kinase. This important regulatory enzyme is associated with AKAP4, the principal component of the fibrous sheath; AKAP4 is synthesized as a precursor, pro-AKAP4, which is cleaved into mature AKAP4 during fibrous sheath assembly. To define the domains responsible for the intracellular distribution and assembly of AKAP4 into a macromolecular complex, various AKAP4-green fluorescent protein (GFP) constructs were introduced into somatic cell lines. The presence of the pro domain, either alone or as part of pro-AKAP4, resulted in a diffuse cytoplasmic localization of the GFP fusion protein, suggesting that, the pro domain keeps the AKAP4 precursor unassembled in vivo until it is transported to the developing tail structure and incorporated into the fibrous sheath. When the mature AKAP4-GFP fusion protein was expressed, it localized in a punctate cytoplasmic pattern. Two domains critical for this punctate localization, T2a and T2b, are homologous to the T2-tethering domain of rat AKAP5 that is important for binding to the actin cytoskeleton in transfected HEK293 cells. In contrast to AKAP5, the distribution of AKAP4 was dependent on the microtubular cytoskeleton. The interaction of AKAP4 with the microtubular network provides evidence that the longitudinal columns of the fibrous sheath, which contain AKAP4, may interact directly with the outer microtubular doublets of the sperm axoneme.


Subject(s)
Protein Precursors/metabolism , Protein Structure, Tertiary , Spermatozoa/metabolism , 3T3 Cells , A Kinase Anchor Proteins , Actins/metabolism , Animals , Cells, Cultured , Cytoplasm/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Mice , Microtubules/metabolism , Protein Precursors/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
11.
Mol Reprod Dev ; 70(4): 397-405, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15685631

ABSTRACT

An X chromosome-linked gene, Akap4, is expressed only during spermiogenesis and encodes the major fibrous sheath protein of the mouse sperm flagellum. All sperm contain the AKAP4 protein even though only X chromosome-bearing spermatids express the gene, indicating that the Akap4 mRNA and/or protein must be shared among the conjoined spermatids via the intercellular bridges. There are two mouse Akap4 cDNA clones, Akap82 and Fsc1, which represent mRNAs that arise by alternative processing of a single gene. Although Akap82 and Fsc1 encode identical mature proteins, they differ in their 5' UTRs. We hypothesized that the expression pattern of these two mRNAs might be relevant to the issue of mRNA and/or protein transport into adjacent spermatids. Expression of both transcripts began in round spermatids, but the amount of the Akap82 transcript in condensing spermatids increased twofold relative to Fsc1. Significantly, only the Akap82 transcript was found on polyribosomes and translated in spermatids. These results indicate that the Akap82 transcript and/or its protein must be shared among the conjoined X and Y chromosome-bearing spermatids. Although Fsc1 was not polysomal, both the Akap82 and Fsc1 transcripts were deadenylated during spermiogenesis, suggesting that deadenylation is not always correlated with loading of mRNAs onto polyribosomes in germ cells. The distinct 5' UTR sequences in Akap82 and Fsc1 did not differ in their ability to regulate translation of reporter constructs either in vivo or in vitro. Antisense RNA transcripts complementary to both the Akap82 and Fsc1 mRNAs were present, suggesting that translatability may be regulated by these RNAs.


Subject(s)
Alternative Splicing , Polyribosomes/metabolism , Protein Precursors/genetics , RNA, Messenger/metabolism , Spermatids/metabolism , 5' Untranslated Regions , A Kinase Anchor Proteins , Animals , Male , Mice , Protein Precursors/biosynthesis , RNA, Antisense/metabolism , Sperm Midpiece/metabolism , X Chromosome/metabolism , Y Chromosome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...