Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Transl Res ; 273: 58-77, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39025226

ABSTRACT

Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-ß1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.


Subject(s)
Extracellular Matrix , Fibrosis , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Phenotype , Induced Pluripotent Stem Cells/metabolism , Humans , Extracellular Matrix/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Differentiation , Myofibroblasts/pathology , Myofibroblasts/metabolism
2.
Matrix Biol ; 125: 12-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944712

ABSTRACT

Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-ß signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-ß signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-ß-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-ß signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.


Subject(s)
Prostatic Neoplasms , Transforming Growth Factor beta , Male , Humans , Transforming Growth Factor beta/metabolism , Epithelial-Mesenchymal Transition , Prostatic Neoplasms/pathology , Extracellular Matrix/metabolism , Prostate/metabolism , Cell Line, Tumor
3.
Sci Rep ; 12(1): 17409, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36257968

ABSTRACT

Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.


Subject(s)
Antineoplastic Agents , Cardiovascular Agents , Induced Pluripotent Stem Cells , Humans , Tissue Engineering/methods , Heart/physiology , Cell Differentiation/physiology , Cardiovascular Agents/metabolism , Antineoplastic Agents/metabolism , Myocytes, Cardiac/metabolism
4.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977524

ABSTRACT

The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.


Subject(s)
Cardiomyopathy, Dilated , Dystrophin , Induced Pluripotent Stem Cells , Muscular Dystrophies , Myocytes, Cardiac , Stem Cell Transplantation , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/therapy , Clinical Trials as Topic , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/transplantation , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
5.
Stem Cell Res ; 45: 101819, 2020 05.
Article in English | MEDLINE | ID: mdl-32348941

ABSTRACT

Becker Muscular dystrophy (BMD) is an X-linked syndrome characterized by progressive muscle weakness. BMD is generally less severe than Duchenne Muscular Dystrophy. BMD is caused by mutations in the dystrophin gene that normally give rise to the production of a truncated but partially functional dystrophin protein. We generated an induced pluripotent cell line from dermal fibroblasts of a BMD patient carrying a splice mutation in the dystrophin gene (c.1705-8 T>C). The iPSC cell-line displayed the characteristic pluripotent-like morphology, expressed pluripotency markers, differentiated into cells of the three germ layers and had a normal karyotype.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Dystrophin/genetics , Exons , Humans , Muscular Dystrophy, Duchenne/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL