Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 978: 176800, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38950835

ABSTRACT

Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid ß-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.


Subject(s)
Apigenin , Glucosides , Receptors, Adiponectin , Receptors, Adiponectin/agonists , Receptors, Adiponectin/metabolism , Animals , Humans , Mice , Apigenin/pharmacology , Apigenin/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Male , Hep G2 Cells , HEK293 Cells , Disease Models, Animal , Mice, Inbred C57BL , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , AMP-Activated Protein Kinases/metabolism
2.
Bioorg Med Chem Lett ; 108: 129789, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38729318

ABSTRACT

Receptors are proteinous macromolecules which remain in the apo form under normal/unliganded conditions. As the ligand approaches, there are specific stereo-chemical changes in the apo form of the receptor as per the stereochemistry of a ligand. Accordingly, a series of substituted dimethyl-chroman-based stereochemically flexible and constrained Tamoxifen analogs were synthesized as anti-breast cancer agents. The synthesized compounds 19a-e, 20a-e, 21, and 22a-e, showed significant antiproliferative activity against estrogen receptor-positive (ER+, MCF-7) and negative (ER-, MDA MB-231) cells within IC50 value 8.5-25.0 µM. Amongst all, four potential molecules viz 19b, 19e, 22a, and 22c, were evaluated for their effect on the cell division cycle and apoptosis of ER+ and ER- cancer cells (MCF-7 & MDA MB-231cells), which showed that these compounds possessed antiproliferative activity through triggering apoptosis. In-silico docking experiments elucidated the possible affinity of compounds with estrogen receptors-α and -ß.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Stereoisomerism , Structure-Activity Relationship , Cell Line, Tumor , Apoptosis/drug effects , Chromans/pharmacology , Chromans/chemical synthesis , Chromans/chemistry , Molecular Docking Simulation , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Female , Molecular Structure , MCF-7 Cells , Dose-Response Relationship, Drug , Tamoxifen/pharmacology , Tamoxifen/chemical synthesis , Tamoxifen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL