Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 11(2): 231008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328565

ABSTRACT

The in-depth analytical characterization of polymers, in particular regarding intended biomedical applications, is becoming increasingly important to elucidate their structure-property relationships. Specifically, end group analysis of e.g. polymers featuring a 'stealth effect' towards the immune system is of particular importance because of their use in coupling reactions to bioactive compounds. Herein, we established a liquid chromatography (LC) protocol to analyse bicyclo[6.1.0]nonyne-functionalized poly(2-alkyl-2-oxazoline)s (POx)s as promising functional polymers that can be applied in strain-promoted click reactions. This work involved the synthesis of poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) by living cationic ring-opening polymerization (CROP) with different molar masses ranging from 2 up to 17.5 kDa and, to our knowledge, the first liquid chromatographic analysis of PMeOx. The developed analytical protocol enables the quantitative determination of post-polymerization reaction sequences with respect to the conversion of the ω-end groups. All synthesized polymers were straightforwardly analysed on a C18-derivatized silica monolithic column under reversed-phase chromatographic conditions with a binary mobile phase gradient comprising a mixture of acetonitrile and water. Subsequent mass spectrometry of collected elution fractions enabled the confirmation of the desired ω-end group functionalities and the identification of synthetic by-products.

2.
Pharmaceutics ; 16(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38399248

ABSTRACT

Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH2, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.e., HNP-COOH and HNP-RGD as well as HNP-RGD/COOH mixed) were loaded with the anti-inflammatory drug BRP-201 and prepared in two size ranges (dH ~140 nm and dH ~250 nm). The HNPs were examined further for their stability, degradation, MDM uptake, and drug delivery efficiency by studying the inhibition of 5-lipoxygenase (5-LOX) product formation, whereby HNP-COOH and HNP-RGD both exhibited superior uptake, and the HNP-COOH/RGD (2:1) displayed the highest inhibition.

3.
Anal Chem ; 95(28): 10795-10802, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37418577

ABSTRACT

Understanding the polymorphism of lipids in solution is the key to the development of intracellular delivery systems. Here, we study the dynamics of poly(ethylene glycol)-lipid (PEG-Lipid) conjugates aiming at a better understanding of their molecular properties and aggregation behavior in solution. Those PEG-Lipids are used as components of lipid nanoparticles (LNPs). LNPs are gaining increased popularity, e.g., by their utilization in modern vaccination strategies against SARS-CoV-2. Characterization of the systems is conducted by the classical methods of hydrodynamics in different solvents, such as ethanol and water, which are also commonly used for LNP formulation. We were able to elucidate the structurally associated hydrodynamic properties of isolated PEG-Lipids in ethanol, revealing the typically expected values of the hydrodynamic invariant for random coil polymers. By virtue of the same experimental setting, the PEG-Lipids' behavior in water was as well studied, which is a less good solvent than ethanol for the PEG-Lipids. Our experiments demonstrate that PEG-Lipids dissolved in water form well-defined micelles that can quantitatively be characterized in terms of their degree of aggregation of PEG-Lipid polymer unimers, their hydrodynamic size, and solvation, i.e., the quantitative determination of water contained or associated to the identified micelles. Quantitative results obtained from classical hydrodynamic analyses are fully supported by studies with standard dynamic light scattering (DLS). The obtained diffusion coefficients and hydrodynamic sizes are in excellent agreement with numerical results derived from analytical ultracentrifugation (AUC) data. Cryo-transmission electron microscopy (cryo-TEM) supports the structural insight from hydrodynamic studies, particularly, in terms of the observed spherical structure of the formed micelles. We demonstrate experimentally that the micelle systems can be considered as solvent-permeable, hydrated spheres.


Subject(s)
COVID-19 , Micelles , Humans , Hydrodynamics , SARS-CoV-2 , Polyethylene Glycols/chemistry , Solvents , Polymers , Water/chemistry , Lipids/chemistry , Ethanol
4.
Anal Chem ; 95(2): 565-569, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36548201

ABSTRACT

Multifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic-co-glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Those NPs feature a variety of encapsulated drugs including the well-known ibuprofen (Ibu) as well as dexamethasone (Dex) and dexamethasone acetate (DexAce), with the latter being of potential interest for clinical treatment of SARS-CoV-2 patients. All those dissolved formulation compositions have been subjected to liquid chromatography on reversed-phase silica monolithic columns, allowing to quantitatively assess amounts of small molecule drug and NP constituting PLGA polymer in a single run. The chromatographically resolved hydrophobicity differences of the drugs correlated with their formulation loading and were clearly separated from the PLGA matrix polymer with high resolution. Our study identifies the viability of reversed-phase monolithic silica in the chromatography of both small drug molecules and particularly pharmapolymers in a repeatable and simultaneous fashion, and can provide a valuable strategy for analysis of diverse precursor polymer systems and drug components in multifunctional drug formulations.


Subject(s)
COVID-19 , Nanoparticles , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , SARS-CoV-2 , Nanoparticles/chemistry , Chromatography, Liquid , Particle Size , Drug Carriers/chemistry
5.
Macromol Biosci ; 23(1): e2200262, 2023 01.
Article in English | MEDLINE | ID: mdl-36259557

ABSTRACT

All-aqueous, surfactant-free, and pH-driven nanoformulation methods to generate pH- and temperature-responsive polymer nanoparticles (NPs) are described. Copolymers comprising a poly(methyl methacrylate) (PMMA) backbone with a few units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) are solubilized in acidic buffer (pH 2.0) to produce pH-sensitive NPs. Copolymers of different molar mass (2.3-11.5 kg mol-1 ) and DMAEMA composition (7.3-14.2 mol%) are evaluated using a "conventional" pH-driven nanoformulation method (i.e., adding an aqueous polymer solution (acidic buffer) into an aqueous non-solvent (basic buffer)) and a robotized method for pH adjustment of polymer dispersions. Dynamic light scattering, zeta-potential (ζ), and sedimentation-diffusion analyses suggest the formation of dual-responsive NPs of tunable size (from 20 to 110 nm) being stable for at least 28 days in the pH and temperature intervals from 2.0 to 6.0 and 25 to 50 °C, respectively. Ultraviolet-visible spectroscopic experiments show that these NPs can act as nanocarriers for the pH-sensitive dipyridamole drug, expanding its bioavailability and potential controlled release as a function of pH and temperature. These approaches offer alternative strategies to prepare stimuli-responsive NPs, avoiding the use of harmful solvents and complex purification steps, and improving the availability of biocompatible polymer nanoformulations for specific controlled release of pH-sensitive cargos.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , Surface-Active Agents , Delayed-Action Preparations/chemistry , Nanoparticles/chemistry , Polymethyl Methacrylate , Hydrogen-Ion Concentration
6.
Biomacromolecules ; 23(9): 3593-3601, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35904477

ABSTRACT

Influenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses. We site-specifically conjugated a genetically engineered IFN-α2a mutant to poly(2-ethyl-2-oxazoline)s (PEtOx) of different molecular weights by strain-promoted azide-alkyne cyclo-addition. The promising pharmacokinetic profile of the 25 kDa PEtOx bioconjugate in mice echoed an efficacy in IAV-infected ferrets. One intraperitoneal administration of this bioconjugate, but not the marketed IFN-α2a bioconjugate, changed the disease course similar to oseltamivir, given orally twice every study day. PEtOxylated IFN-α2a bioconjugates may expand our therapeutic arsenal against future influenza pandemics, particularly in light of rising first-line antiviral drug resistance to IAV.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Animals , Antiviral Agents/pharmacology , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/drug therapy , Mice , Oseltamivir/pharmacology , Oseltamivir/therapeutic use
7.
J Control Release ; 348: 881-892, 2022 08.
Article in English | MEDLINE | ID: mdl-35764249

ABSTRACT

Conjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys. LPGylated bioconjugates had faster disposition kinetics despite comparable hydrodynamic radii to their PEGylated analogues. Overall exposure of the PEGylated IFN-α2a with a 40 kDa polymer exceeded Pegasys, which, in return, was similar to the 40 kDa LPGylated conjugates. The study points to an expanded polymer design space through which the selected polymer class may result in a different distribution of the studied bioconjugates.


Subject(s)
Polyethylene Glycols , Polymers , Humans , Interferon alpha-2 , Kinetics , Polyethylene Glycols/pharmacokinetics , Recombinant Proteins
8.
Anal Chim Acta ; 1205: 339741, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35414386

ABSTRACT

Hydrodynamic and light scattering methods are urgently required for accurate characterization of nanoparticles (NPs) in the field of nanomedicine to unveil their sizes and distributions. A fundamental characterization approach in the field of nanomedicines is, next to standard batch dynamic light scattering (DLS) and increasingly more applied (asymmetrical flow) field-flow fractionation (FFF) coupled to multi-angle laser light scattering (MALLS), the utilization of an analytical ultracentrifuge (AUC). Here, we demonstrate the power of an AUC in comparison to batch DLS and FFF-MALLS to decipher, in detail, the size and dispersity of pharma-relevant, commercial and in-house prepared soft matter NPs, suitable for life science applications. In this study, size and dispersity of poly(lactic-co-glycolic acid) (PLGA) NPs and in-house prepared NPs, consisting of the commercially available pharmapolymer Eudragit® E or of a polymer of similar composition synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, were investigated. Simultaneously, an insight on the presence of the utilized surfactant on the NP formulations, which is usually limited with other techniques, could be achieved by multi-speed experiments with the AUC in one experimental setting. While the repeatability and ruggedness of observations with modern AUC instruments of the newest generation is demonstrated, the results are further underpinned by the classical relations of hydrodynamics. Investigations aiming at hydrodynamic diameters (from DLS) and radii of gyration (from FFF-MALLS) are critically discussed and compared to the repeatable and rugged investigations by an AUC. The latter is proven to provide a self-sufficient experimental approach for NP characterization in the field of nanomedicine based on absolute principles, compares well to FFF-MALLS, and can unravel issues in NP sizing that arise when more common techniques, such as DLS, are used.


Subject(s)
Fractionation, Field Flow , Nanoparticles , Dynamic Light Scattering , Fractionation, Field Flow/methods , Nanomedicine , Particle Size
9.
Cell Mol Life Sci ; 79(1): 40, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34971430

ABSTRACT

Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.


Subject(s)
Leukotriene Antagonists/pharmacology , Leukotrienes , Nanoparticles/chemistry , Animals , Female , Healthy Volunteers , Humans , Leukotrienes/biosynthesis , Leukotrienes/metabolism , Male , Mice
10.
Beilstein J Org Chem ; 17: 2621-2628, 2021.
Article in English | MEDLINE | ID: mdl-34760028

ABSTRACT

Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications.

11.
Anal Chem ; 93(48): 15805-15815, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34806364

ABSTRACT

The analytical ultracentrifuge (AUC) and the modern field of analytical ultracentrifugation found its inception approximately a century ago. We highlight the scope of its major experimental opportunities as a transport-based method, contemporary and up-and-coming investigation potential for polymers, polymer-drug conjugates, polymer assemblies, as well as medical nanoparticles. Special focus lies on molar mass estimates of unimeric polymeric species, self-assemblies in solution, and (co)localization of multicomponent systems in solution alongside the material-biofluid interactions. We close with present challenges and incentives for future research.


Subject(s)
Nanomedicine , Nanoparticles , Molecular Weight , Polymers , Ultracentrifugation
12.
Nanoscale ; 13(46): 19412-19429, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34591061

ABSTRACT

Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.


Subject(s)
Gene Transfer Techniques , Micelles , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Temperature
13.
EMBO Mol Med ; 13(10): e14436, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34472699

ABSTRACT

Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.


Subject(s)
Liver Diseases , Sepsis , Animals , Mice , Neutrophil Infiltration , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Sepsis/drug therapy
14.
J Chromatogr A ; 1653: 462364, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34280792

ABSTRACT

Hydrophilic poly(2-oxazoline)s represent a promising alternative to replace poly(ethylene glycol) in the biomedical field. For that purpose, reliable analytical protocols to confirm identity and quantity of impurities are required. In particular, side products deriving from chain transfer reactions occurring during the cationic ring-opening polymerization and incomplete end-capping processes may be present. The analytical approach must hence be capable of separating polymers according to minor changes regarding their end group. We demonstrate that liquid chromatography, relying on a monolithic C18-modified silica column and isocratic as well as gradient elution using water / acetonitrile mixtures and varying detectors, can accomplish such demanding high resolution separations. Poly(2-ethyl-2-oxazoline)s (PEtOx) with acetyl, hydroxyl, and phthalimide ω-end groups were investigated. Identification of side products was achieved through coupling with electrospray ionization mass spectrometry. UV / Vis detection was applied to quantify chain transfer products in PEtOx comprising biphenyl moieties. In addition, gradient elution enabled the separation of PEtOx into macromolecules according to their specific degrees of polymerization in molar mass ranges around 2,000 g mol-1.


Subject(s)
Chromatography, Liquid , Polymers , Molecular Weight , Polymers/chemical synthesis , Protons
15.
ACS Nano ; 15(7): 12298-12313, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34270899

ABSTRACT

Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver.


Subject(s)
Drug Carriers , Micelles , Drug Carriers/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Liver
16.
Langmuir ; 37(8): 2543-2551, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33587852

ABSTRACT

Bile colloids containing taurocholate and lecithin are essential for the solubilization of hydrophobic molecules including poorly water-soluble drugs such as Perphenazine. We detail the impact of Perphenazine concentrations on taurocholate/lecithin colloids using analytical ultracentrifugation, dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance spectroscopy, coarse-grained molecular dynamics simulations, and isothermal titration calorimetry. Perphenazine impacted colloidal molecular arrangement, structure, and binding thermodynamics in a concentration-dependent manner. At low concentration, Perphenazine was integrated into stable and large taurocholate/lecithin colloids and close to lecithin. Integration of Perphenazine into these colloids was exothermic. At higher Perphenazine concentration, the taurocholate/lecithin colloids had an approximately 5-fold reduction in apparent hydrodynamic size, heat release was less exothermic upon drug integration into the colloids, and Perphenazine interacted with both lecithin and taurocholate. In addition, Perphenazine induced a morphological transition from vesicles to wormlike micelles as indicated by neutron scattering. Despite these surprising colloidal dynamics, these natural colloids successfully ensured stable relative amounts of free Perphenazine throughout the entire drug concentration range tested here. Future studies are required to further detail these findings both on a molecular structural basis and in terms of in vivo relevance.

17.
ACS Macro Lett ; 10(7): 837-843, 2021 07 20.
Article in English | MEDLINE | ID: mdl-35549195

ABSTRACT

Strong directional hydrogen bonds represent a suitable supramolecular force to drive the one-dimensional (1D) aqueous self-assembly of polymeric amphiphiles resulting in cylindrical polymer brushes. However, our understanding of the kinetics in these assembly processes is still limited. We here demonstrate that the obtained morphologies for our recently reported benzene tris-urea and tris-peptide conjugates are strongly pathway-dependent. A controlled transfer from solutions in organic solvents to aqueous environments enabled a rate-dependent formation of kinetically trapped but stable nanostructures ranging from small cylindrical or spherical objects (<50 nm) to remarkably large fibers (>2 µm). A detailed analysis of the underlying assembly mechanism revealed a cooperative nature despite the steric demands of the polymers. Nucleation is induced by hydrophobic interactions crossing a critical water content, followed by an elongation process due to the strong hydrogen bonds. These findings open an interesting new pathway to control the length of 1D polymer nanostructures.


Subject(s)
Nanofibers , Nanostructures , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Nanofibers/chemistry , Nanostructures/chemistry , Polymers/chemistry , Water/chemistry
18.
J Colloid Interface Sci ; 584: 592-601, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33157492

ABSTRACT

HYPOTHESIS: A prominent fraction of mobile organic matter in natural aqueous soil solutions is formed by molecules in sizes that seamlessly exceed the lower end of what is defined as a colloid. The hydrodynamics and the functional diversity of these molecules result in a transport behavior that is fundamentally different from smaller compounds. However, there is a lack of "reactive tracers" that allow for the study of colloidal transport phenomena appropriately. We hypothesize that tailor-made and well-defined synthetic polymers can overcome this limitation. EXPERIMENTS: We prepared and characterized the hydrodynamic properties of water-soluble poly(ethylene glycol)s (PEG) and studied their adsorption to mixtures of quartz, illite, and goethite in batch and column experiments. FINDINGS: We used this information to independently predict the transport of PEG with striking agreement to the observed mean breakthrough times in all porous media. As PEG transport can be comprehensively and quantitatively reconstructed, we conclude that functionalized PEGs are promising candidates to be used as tailorable and non-toxic tracers available in the size range of natural organic (macro-)molecules.

19.
Macromol Rapid Commun ; 42(8): e2000585, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33274820

ABSTRACT

The assembly of supramolecular polymer bottlebrushes in aqueous systems is, in most cases, associated with a lateral aggregation of the supramolecular building blocks in addition to their axial stacking. Here, it is demonstrated that this limitation can be overcome by attaching three polymer chains to a central supramolecular unit that possesses a sufficiently high number of hydrogen bonding units to compensate for the increased steric strain. Therefore, a 1,3,5-benzenetrisurea-polyethylene oxide conjugate is modified with different peptide units located next to the urea groups which should facilitate self-assembly in water. For a single amino acid per arm, spherical micelles are obtained for all three tested amino acids (alanine, leucine, and phenylalanine) featuring different hydrophobicities. Only a slight increase in size and solution stability of spherical micelles is observed with increasing hydrophobicity of amino acid unit. In contrast, introducing two amino acid units per arm and thus increasing the number of hydrogen bonds per unimer molecule results in the formation of cylindrical structures, that is, supramolecular polymer bottlebrushes, despite a suppressed lateral aggregation. Consequently, it can be concluded that the number of hydrogen bonds has a more profound impact on the resulting solution morphology than the hydrophobicity of the amino acid unit.


Subject(s)
Polymers , Water , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Micelles
20.
Int J Pharm ; 593: 120080, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33246046

ABSTRACT

Cationic polymers are promising gene delivery vectors due to their ability to bind and protect genetic material. The introduction of hydrophobic moieties into cationic polymers can further improve the vector efficiency, but common formulations of hydrophobic polymers involve harsh conditions such as organic solvents, impairing intactness and loading efficiency of the genetic material. In this study, a mild, aqueous formulation method for the encapsulation of high amounts of genetic material is presented. A well-defined pH-responsive hydrophobic copolymer, i.e. poly((n-butylmethacrylate)-co-(methylmethacrylate)-co-(2-(dimethylamino) ethylmethacrylate)), (PBMD) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Exploiting the pH-dependent solubility behavior of the polymer, stable pDNA loaded nanoparticles were prepared and characterized using analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). This novel formulation approach showed high transfection efficiencies in HEK293T cells, while requiring 5- to 10-fold less pDNA compared to linear polyethylenimine (LPEI), in particular at short incubation times and in serum-containing media. Furthermore, the formulation was successfully adopted for siRNA and mRNA encapsulation and the commercially approved polymer Eudragit® E(PO/100). Overall, the aqueous formulation approach, accompanied by a tailor-made hydrophobic polymer and detailed physicochemical and application studies, led to improved gene delivery vectors with high potential for further applications.


Subject(s)
Gene Transfer Techniques , Polymers , Cations , HEK293 Cells , Humans , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...