Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 99(4): 1142-1148, 2023.
Article in English | MEDLINE | ID: mdl-36437576

ABSTRACT

Basal cells in the corneal limbus play an important role in the turnover cycle because they are the source of all cells that constitute the corneal epithelium. We examined the penetration depth of ultraviolet (UV) light in the corneal limbus and assessed the safety of Far-UV-C on stem cells in the basal area of the corneal limbus. Rats were irradiated with UV at peaks of 207, 222, 235, 254 and 311 nm while under anesthesia. The UV penetration depth in the rat corneal limbal epithelium was wavelength dependent: 311 nm UV-B and 254 nm UV-C reached the basal cells of the epithelium, and 235 nm radiation reached the middle area; however, 207 and 222 nm UV-C reached only the superficial layer of the epithelium. Porcine cornea, which is similar to the human eye in size and structure, were irradiated with 222 and 254 nm UV-C. As in rats, 222 nm UV-C reached only the superficial layer of the porcine corneal limbal epithelium. These results indicate that Far-UV-C, such as radiation of wavelengths of 207 and 222 nm, could not reach corneal epithelial stem cells, i.e. the cells remained intact. It is unlikely that the turnover of the corneal epithelium is obstructed or disrupted by exposure to Far-UV-C.


Subject(s)
Epithelium, Corneal , Limbus Corneae , Humans , Rats , Swine , Animals , Cornea , Epithelial Cells , Stem Cells
2.
Photochem Photobiol ; 98(6): 1365-1371, 2022 11.
Article in English | MEDLINE | ID: mdl-35313036

ABSTRACT

For the prevention of surgical site infection (SSI), continuous disinfection could be helpful. Short wavelength ultraviolet radiation C (UVC) is highly bactericidal but shows cytotoxicity. Radiation of UVC with a wavelength of 222 nm to the skin is considered to be safe because it only reaches the stratum corneum. However, the safety of 222 nm irradiation to the surgical field not covered with skin is unknown. The purpose of this study was to examine the safety of 222 nm UVC irradiation on a surgical field in a rabbit model. Five types of tissue were surgically exposed and irradiated with 222 or 254 nm UVC. Immunohistological assessment against cyclobutane pyrimidine dimer (CPD), an index of DNA damage by UVC, was performed. The CPD-positive cell rate was significantly higher in the 254 nm group than in the other groups in all tissues. A 222 nm group showed significantly more CPD than control in fat tissue, but no significant difference in all other tissues. In fat tissue collected 24 h after irradiation, the 254 nm group showed higher CPD than the other groups, while the 222 nm group had reduced to the control level. These data suggest that 222 nm UVC irradiation could be a new method to safely prevent SSI.


Subject(s)
Pyrimidine Dimers , Ultraviolet Rays , Animals , Rabbits , Pyrimidine Dimers/radiation effects , DNA Damage , Skin/radiation effects , Epidermis/radiation effects
3.
Photochem Photobiol ; 97(3): 505-516, 2021 05.
Article in English | MEDLINE | ID: mdl-33749837

ABSTRACT

Corneal damage-induced various wavelength UV (311, 254, 235, 222 and 207 nm) was evaluated in rats. For 207 and 222-UV-C, the threshold radiant exposure was between 10 000 and 15 000 mJ cm-2 at 207 nm and between 3500 and 5000 mJ cm-2 at 222 nm. Penetrate depth to the cornea indicated by cyclobutene pyrimidine dimer (CPD) localization immediately after irradiation was dependent on the wavelength. 311 and 254 nm UV penetrate to corneal endothelium, 235 nm UVC to the intermediate part of corneal stroma, 222 and 207 nm UVC only to the most outer layer of corneal epithelium. CPD observed in corneal epithelium irradiated by 222 nm UVC disappeared until 12 h after. The minimum dose to induce corneal damage of short-wavelength UV-C was considerably higher than the threshold limit value (TLV® ) promulgated by American Conference of Governmental Industrial Hygienists (ACGIH). The property that explains why UV-C radiation at 207 and 222 nm is extremely less hazardous than longer UV wavelengths is the fact that this radiation only penetrates to the outermost layer of the corneal epithelium. These cells typically peel off within 24 h during the physiological turnover cycle. Hence, short-wavelength UV-C might be less hazardous to the cornea than previously considered until today.


Subject(s)
Corneal Injuries , Epithelium, Corneal , Animals , Cornea , Pyrimidine Dimers , Rats , Ultraviolet Rays
4.
Free Radic Res ; 53(6): 611-617, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30947566

ABSTRACT

Two hundred twenty-two nanometres ultraviolet (UV) light produced by a krypton-chlorine excimer lamp is harmful to bacterial cells but not skin. However, the effects of 222-nm UV light exposure to the eye are not fully known. We evaluated acute corneal damage induced by 222- and 254-nm UV light in albino rats. Under deep anaesthesia, 6-week-old Sprague-Dawley albino rats were exposed to UV light. The exposure levels of corneal radiation were 30, 150, and 600 mJ/cm2. Epithelial defects were detected by staining with fluorescein. Superficial punctate keratitis developed in corneas exposed to more than 150 mJ/cm2 of UV light, and erosion was observed in corneas exposed to 600 mJ/cm2 of UV light. Haematoxylin and eosin staining also showed corneal epithelial defects in eyes exposed to 254-nm UV light. However, no damage developed in corneas exposed to 222-nm UV light. Cyclobutane pyrimidine dimer-positive cells were observed only in normal corneas and those exposed to 254-nm UV light. Although some epithelial cells were stained weakly in normal corneas, squamous epithelial cells were stained moderately, and the epithelial layer that was detached from the cornea exposed to 600 mJ/cm2 of light was stained intensely in corneas exposed to 254-nm UV light. In the current study, no corneal damage was induced by 222-nm UV light, which suggested that 222-nm UV light may not harm rat eyes within the energy range and may be useful for sterilising or preventing infection in the future.


Subject(s)
Cornea/pathology , Radiation Injuries, Experimental , Ultraviolet Rays , Acute Disease , Animals , Corneal Injuries , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...