Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 751-761, 2021 04.
Article in English | MEDLINE | ID: mdl-33159802

ABSTRACT

Glomeruli and renal tubule injury in chronic kidney disease (CKD) is reported to involve induction of macrophage activation through the CCL2/CCR2 axis. The effects of inhibitors of the CCL2/CCR2 axis, such as anti-CCL2 antibody and CCR2 antagonist, on kidney function in animal models or humans with kidney dysfunction have been demonstrated. The N-terminal glutamine on immature CCL2 is replaced with pyroglutamate (pE) by glutaminyl cyclase (QC) and isoQC. pE-CCL2 is stable and resistant to peptidases. We hypothesized that inhibiting QC/isoQC activity would lead to the degradation of CCL2, thereby ameliorating CKD and reducing kidney inflammation. To test this hypothesis, we investigated the renoprotective properties of the QC/isoQC inhibitor PQ529 in anti-glomerular basement membrane (GBM) antibody-induced glomerulonephritis Wistar Kyoto (WKY) rats. Three-week repeated administration of PQ529 (30 and 100 mg/kg, twice daily) significantly reduced the serum and urine CCL2 and urinary protein excretion in a dose-dependent manner. Correlations between the urinary protein level and serum or urinary CCL2 levels were confirmed in tested animals. Repeated administration of PQ529 significantly reduced the expression of CD68, a macrophage marker, in the kidney cortex and mononuclear infiltration into the tubulointerstitium. In addition, decreased levels of urinary KIM-1, ß2 microglobulin, and clusterin were detected, suggesting the inhibition of inflammation in both the proximal and distal tubules. These results suggest that PQ529 suppresses the progression of inflammation-induced renal dysfunction by inhibiting the CCL2/CCR2 axis. Inhibition of QC/isoQC may thus be a viable alternative therapeutic approach for treating glomerulonephritis and CKD patients.


Subject(s)
Aminoacyltransferases/antagonists & inhibitors , Benzimidazoles/therapeutic use , Glomerulonephritis/drug therapy , Imidazolines/therapeutic use , Protective Agents/therapeutic use , Renal Insufficiency, Chronic/drug therapy , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Cell Adhesion Molecules/urine , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/blood , Chemokine CCL2/metabolism , Chemokine CCL2/urine , Clusterin/urine , Glomerulonephritis/blood , Glomerulonephritis/metabolism , Glomerulonephritis/urine , Imidazolines/pharmacokinetics , Imidazolines/pharmacology , Interferon-gamma/metabolism , Kidney/drug effects , Kidney/metabolism , Male , Protective Agents/pharmacokinetics , Protective Agents/pharmacology , Rats, Inbred WKY , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/urine , beta 2-Microglobulin/urine
2.
Extremophiles ; 12(2): 217-23, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17989916

ABSTRACT

Deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) from Thermus thermophilus HB8 (TTHB8) hydrolyzes wide variety of dNTPs to deoxyribonucleoside and inorganic triphosphate in magnesium-dependent manner. In this paper, we assess the specificity for various metal ions and of the dNTP triphosphohydrolase activity of the dNTPase from TTHB8. Manganese and cobalt ions more effectively induced the activity for dNTPs than magnesium and, unexpectedly, brought about the degradation of single kind of dNTP. Manganese and cobalt concentrations of 10 nM were enough to induce the activity, while magnesium of about 1 mM was required for the induction of the activity. To further evaluate metal ions inherent to dNTPase in TTHB8 cells, we measured intracellular concentrations of major metal ions in TTHB8 cells by inductively coupled plasma emission spectroscopy and compared them with the dependence of metal ion concentration on dNTPase activity. Though cobalt ion was below detectable level, magnesium and manganese ions were detected at sufficient level to induce dNTPase activity. These results suggest that both manganese and magnesium ions are likely to be functional under intracellular condition. In addition, the proposed model of dNTPase activity induced by magnesium and multiple dNTPs was discussed based on the results obtained in this study.


Subject(s)
Bacterial Proteins/metabolism , Metals/metabolism , Models, Biological , Nucleotidases/metabolism , Thermus thermophilus/enzymology , Deoxyribonucleotides/metabolism , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Metals/pharmacology , Polyphosphates/metabolism
3.
J Biotechnol ; 120(4): 341-6, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16140408

ABSTRACT

Escherichia coli is the most frequently used host for heterologous gene expression. This study focuses on the effect of AT-rich codons immediately downstream of the initiation codon of the target gene. The third to sixth codons of ndx3, a Nudix hydrolase gene from Thermus thermophilus HB8, were engineered by introducing several silent mutations. As a result, the expression level of ndx3 increased in proportion to the AT-content in the third to sixth codons. This result suggests that incorporation of AT-rich codons can be utilized as a general strategy for improving the expression efficiency of a recombinant protein.


Subject(s)
Bacterial Proteins/genetics , Codon, Initiator/genetics , Escherichia coli , Gene Expression , Pyrophosphatases/genetics , Thermus thermophilus/enzymology , AT Rich Sequence/genetics , Bacterial Proteins/biosynthesis , Pyrophosphatases/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Thermus thermophilus/genetics , Nudix Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL