Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Magn Reson Imaging ; 98: 140-148, 2023 05.
Article in English | MEDLINE | ID: mdl-36646397

ABSTRACT

PURPOSE: To develop a respiratory-resolved motion-compensation method for free-breathing, high-resolution coronary magnetic resonance angiography (CMRA) using a 3D cones trajectory. METHODS: To achieve respiratory-resolved 0.98 mm resolution images in a clinically relevant scan time, we undersample the imaging data with a variable-density 3D cones trajectory. For retrospective motion compensation, translational estimates from 3D image-based navigators (3D iNAVs) are used to bin the imaging data into four phases from end-expiration to end-inspiration. To ensure pseudo-random undersampling within each respiratory phase, we devise a phyllotaxis readout ordering scheme mindful of eddy current artifacts in steady state free precession imaging. Following binning, residual 3D translational motion within each phase is computed using the 3D iNAVs and corrected for in the imaging data. The noise-like aliasing characteristic of the combined phyllotaxis and cones sampling pattern is leveraged in a compressed sensing reconstruction with spatial and temporal regularization to reduce aliasing in each of the respiratory phases. RESULTS: In initial studies of six subjects, respiratory motion compensation using the proposed method yields improved image quality compared to non-respiratory-resolved approaches with no motion correction and with 3D translational correction. Qualitative assessment by two cardiologists and quantitative evaluation with the image edge profile acutance metric indicate the superior sharpness of coronary segments reconstructed with the proposed method (P < 0.01). CONCLUSION: We have demonstrated a new method for free-breathing, high-resolution CMRA based on a variable-density 3D cones trajectory with modified phyllotaxis ordering and respiratory-resolved motion compensation with 3D iNAVs.


Subject(s)
Heart , Magnetic Resonance Angiography , Humans , Retrospective Studies , Magnetic Resonance Angiography/methods , Coronary Angiography/methods , Reproducibility of Results , Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Artifacts
2.
Magn Reson Med ; 84(2): 800-812, 2020 08.
Article in English | MEDLINE | ID: mdl-32011021

ABSTRACT

PURPOSE: To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA). METHODS: An end-to-end unrolled network is trained to reconstruct beat-to-beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data-consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable-density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model-based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1 -ESPIRiT. Then, the high-resolution coronary MRA images motion corrected with autofocusing using the l1 -ESPIRiT and DL model-based 3D iNAVs are assessed for differences. RESULTS: 3D iNAVs reconstructed using the DL model-based approach and conventional l1 -ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1 -ESPIRiT (20× and 3× speed increases, respectively). CONCLUSIONS: We have developed a deep neural network architecture to reconstruct undersampled 3D non-Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.


Subject(s)
Deep Learning , Magnetic Resonance Angiography , Coronary Angiography , Heart , Humans , Imaging, Three-Dimensional
3.
Magn Reson Med ; 83(6): 2221-2231, 2020 06.
Article in English | MEDLINE | ID: mdl-31691350

ABSTRACT

PURPOSE: To develop a modular magnetization preparation sequence for combined T2 -preparation and multidimensional outer volume suppression (OVS) for coronary artery imaging. METHODS: A combined T2 -prepared 1D OVS sequence with fat saturation was defined to contain a 90°-60 180°60 composite nonselective tip-down pulse, two 180°Y hard pulses for refocusing, and a -90° spectral-spatial sinc tip-up pulse. For 2D OVS, 2 modules were concatenated, selective in X and then Y. Bloch simulations predicted robustness of the sequence to B0 and B1 inhomogeneities. The proposed sequence was compared with a T2 -prepared 2D OVS sequence proposed by Luo et al, which uses a spatially selective 2D spiral tip-up. The 2 sequences were compared in phantom studies and in vivo coronary artery imaging studies with a 3D cones trajectory. RESULTS: Phantom results demonstrated superior OVS for the proposed sequence compared with the Luo sequence. In studies on 15 healthy volunteers, the proposed sequence had superior image edge profile acutance values compared with the Luo sequence for the right (P < .05) and left (P < .05) coronary arteries, suggesting superior vessel sharpness. The proposed sequence also had superior signal-to-noise ratio (P < .05) and passband-to-stopband ratio (P < .05). Reader scores and reader preference indicated superior coronary image quality of the proposed sequence for both the right (P < .05) and left (P < .05) coronary arteries. CONCLUSION: The proposed sequence with concatenated 1D spatially selective tip-ups and integrated fat saturation has superior image quality and suppression compared with the Luo sequence with 2D spatially selective tip-up.


Subject(s)
Coronary Vessels , Image Enhancement , Coronary Vessels/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Angiography , Phantoms, Imaging
4.
Magn Reson Med ; 82(5): 1604-1616, 2019 11.
Article in English | MEDLINE | ID: mdl-31228278

ABSTRACT

PURPOSE: To develop a method for banding-free balanced SSFP cardiac cine imaging in a single breath-hold. METHODS: A frequency modulation scheme was designed for cardiac applications to eliminate the time normally required for steady-state stabilization between multiple phase-cycled acquisitions. Highly undersampled acquisitions were reconstructed using a model-based reconstruction that exploits redundancy both over time and between phase cycles. Performance of the methods was evaluated using both retrospective and prospective undersampling in scans with and without frequency modulation from four subjects. RESULTS: The proposed methods enabled balanced SSFP cardiac cine with three effective phase cycles in only 10 heartbeats. Images acquired with frequency modulation and with standard phase cycling were of similar quality. The combination of temporal and inter-acquisition similarity constraints reduced errors by approximately 45% compared to enforcing similarity constraints over time alone. CONCLUSIONS: In off-resonance conditions that preclude the acquisition of single-acquisition balanced SSFP, phase cycling can eliminate the dark bands in balanced SSFP cine cardiac imaging at the expense of some SNR efficiency. The proposed techniques permit these types of acquisitions in a single breath-hold.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Artifacts , Breath Holding , Healthy Volunteers , Humans , Image Enhancement/methods , Phantoms, Imaging , Sensitivity and Specificity , Signal-To-Noise Ratio
5.
Magn Reson Med ; 82(4): 1398-1411, 2019 10.
Article in English | MEDLINE | ID: mdl-31115936

ABSTRACT

PURPOSE: To enable rapid imaging with a scan time-efficient 3D cones trajectory with a deep-learning off-resonance artifact correction technique. METHODS: A residual convolutional neural network to correct off-resonance artifacts (Off-ResNet) was trained with a prospective study of pediatric MRA exams. Each exam acquired a short readout scan (1.18 ms ± 0.38) and a long readout scan (3.35 ms ± 0.74) at 3 T. Short readout scans, with longer scan times but negligible off-resonance blurring, were used as reference images and augmented with additional off-resonance for supervised training examples. Long readout scans, with greater off-resonance artifacts but shorter scan time, were corrected by autofocus and Off-ResNet and compared with short readout scans by normalized RMS error, structural similarity index, and peak SNR. Scans were also compared by scoring on 8 anatomical features by two radiologists, using analysis of variance with post hoc Tukey's test and two one-sided t-tests. Reader agreement was determined with intraclass correlation. RESULTS: The total scan time for long readout scans was on average 59.3% shorter than short readout scans. Images from Off-ResNet had superior normalized RMS error, structural similarity index, and peak SNR compared with uncorrected images across ±1 kHz off-resonance (P < .01). The proposed method had superior normalized RMS error over -677 Hz to +1 kHz and superior structural similarity index and peak SNR over ±1 kHz compared with autofocus (P < .01). Radiologic scoring demonstrated that long readout scans corrected with Off-ResNet were noninferior to short readout scans (P < .05). CONCLUSION: The proposed method can correct off-resonance artifacts from rapid long-readout 3D cones scans to a noninferior image quality compared with diagnostically standard short readout scans.


Subject(s)
Deep Learning , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Artifacts , Child , Child, Preschool , Female , Humans , Male , Phantoms, Imaging , Pulmonary Veins/diagnostic imaging
6.
Magn Reson Med ; 81(2): 1092-1103, 2019 02.
Article in English | MEDLINE | ID: mdl-30370941

ABSTRACT

PURPOSE: To develop a 3D cones steady-state free precession sequence with improved robustness to respiratory motion while mitigating eddy current artifacts for free-breathing whole-heart coronary magnetic resonance angiography. METHOD: The proposed sequence collects cone interleaves using a phyllotaxis pattern, which allows for more distributed k-space sampling for each heartbeat compared to a typical sequential collection pattern. A Fibonacci number of segments is chosen to minimize eddy current effects with the trade-off of an increased number of acquisition heartbeats. For verification, phyllotaxis-cones is compared to sequential-cones through simulations, phantom studies, and in vivo coronary scans with 8 subjects using 2D image-based navigators for retrospective motion correction. RESULTS: Simulated point spread functions and moving phantom results show less coherent motion artifacts for phyllotaxis-cones compared to sequential-cones. Assessment of the right and left coronary arteries using reader scores and the image edge profile acutance vessel sharpness metric indicate superior image quality and sharpness for phyllotaxis-cones. CONCLUSION: Phyllotaxis 3D cones results in improved qualitative image scores and coronary vessel sharpness for free-breathing whole-heart coronary magnetic resonance angiography compared to standard sequential ordering when using a steady-state free precession sequence.


Subject(s)
Coronary Angiography , Heart/diagnostic imaging , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography , Algorithms , Artifacts , Computer Simulation , Coronary Vessels , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Male , Motion , Phantoms, Imaging , Respiration , Retrospective Studies
7.
Magn Reson Med ; 79(5): 2685-2692, 2018 05.
Article in English | MEDLINE | ID: mdl-28940748

ABSTRACT

PURPOSE: Conventional non-Cartesian compressed sensing requires multiple nonuniform Fourier transforms every iteration, which is computationally expensive. Accordingly, time-consuming reconstructions have slowed the adoption of undersampled 3D non-Cartesian acquisitions into clinical protocols. In this work we investigate several approaches to minimize reconstruction times without sacrificing accuracy. METHODS: The reconstruction problem can be reformatted to exploit the Toeplitz structure of matrices that are evaluated every iteration, but it requires larger oversampling than what is strictly required by nonuniform Fourier transforms. Accordingly, we investigate relative speeds of the two approaches for various nonuniform Fourier transform kernel sizes and oversampling for both GPU and CPU implementations. Second, we introduce a method to minimize matrix sizes by estimating the image support. Finally, density compensation weights have been used as a preconditioning matrix to improve convergence, but this increases noise. We propose a more general approach to preconditioning that allows a trade-off between accuracy and convergence speed. RESULTS: When using a GPU, the Toeplitz approach was faster for all practical parameters. Second, it was found that properly accounting for image support can prevent aliasing errors with minimal impact on reconstruction time. Third, the proposed preconditioning scheme improved convergence rates by an order of magnitude with negligible impact on noise. CONCLUSION: With the proposed methods, 3D non-Cartesian compressed sensing with clinically relevant reconstruction times (<2 min) is feasible using practical computer resources. Magn Reson Med 79:2685-2692, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Data Compression/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Humans , Wavelet Analysis
8.
Magn Reson Med ; 79(6): 2944-2953, 2018 06.
Article in English | MEDLINE | ID: mdl-28994486

ABSTRACT

PURPOSE: To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. METHODS: A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. RESULTS: Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. CONCLUSION: Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine , Algorithms , Artifacts , Computer Simulation , Healthy Volunteers , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Phantoms, Imaging , Pulsatile Flow , Reproducibility of Results , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
9.
Magn Reson Med ; 77(5): 1874-1883, 2017 05.
Article in English | MEDLINE | ID: mdl-27174590

ABSTRACT

PURPOSE: To develop a method for acquiring whole-heart 3D image-based navigators (iNAVs) with isotropic resolution for tracking and correction of localized motion in coronary magnetic resonance angiography (CMRA). METHODS: To monitor motion in all regions of the heart during a free-breathing scan, a variable-density cones trajectory was designed to collect a 3D iNAV every heartbeat in 176 ms with 4.4 mm isotropic spatial resolution. The undersampled 3D iNAV data were reconstructed with efficient self-consistent parallel imaging reconstruction (ESPIRiT). 3D translational and nonrigid motion-correction methods using 3D iNAVs were compared to previous translational and nonrigid methods using 2D iNAVs. RESULTS: Five subjects were scanned with a 3D cones CMRA sequence, accompanied by both 2D and 3D iNAVs. The quality of the right and left anterior descending coronary arteries was assessed on 2D and 3D iNAV-based motion-corrected images using a vessel sharpness metric and qualitative reader scoring. This assessment showed that nonrigid motion correction based on 3D iNAVs produced results that were noninferior to correction based on 2D iNAVs. CONCLUSION: The ability to acquire isotropic-resolution 3D iNAVs every heartbeat during a CMRA scan was demonstrated. Such iNAVs enabled direct measurement of localized motion for nonrigid motion correction in free-breathing whole-heart CMRA. Magn Reson Med 77:1874-1883, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Adult , Algorithms , Artifacts , Coronary Angiography/methods , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Motion , Myocardium/pathology , Phantoms, Imaging , Reproducibility of Results
10.
Magn Reson Med ; 77(5): 1884-1893, 2017 05.
Article in English | MEDLINE | ID: mdl-27174673

ABSTRACT

PURPOSE: To develop a retrospective nonrigid motion-correction method based on 3D image-based navigators (iNAVs) for free-breathing whole-heart coronary magnetic resonance angiography (MRA). METHODS: The proposed method detects global rigid-body motion and localized nonrigid motion from 3D iNAVs and compensates them with an autofocusing algorithm. To model the global motion, 3D rotation and translation are estimated from the 3D iNAVs. Two sets of localized nonrigid motions are obtained from deformation fields between 3D iNAVs and reconstructed binned images, respectively. A bank of motion-corrected images is generated and the final image is assembled pixel-by-pixel by selecting the best focused pixel from this bank. In vivo studies with six healthy volunteers were conducted to compare the performance of the proposed method with 3D translational motion correction and no correction. RESULTS: In vivo studies showed that compared to no correction, 3D translational motion correction and the proposed method increased the vessel sharpness by 13% ± 13% and 19% ± 16%, respectively. Out of 90 vessel segments, 75 segments showed improvement with the proposed method compared to 3D translational correction. CONCLUSION: We have developed a nonrigid motion-correction method based on 3D iNAVs and an autofocusing algorithm that improves the vessel sharpness of free-breathing whole-heart coronary MRA. Magn Reson Med 77:1884-1893, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Coronary Angiography/methods , Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Adult , Algorithms , Artifacts , Cluster Analysis , Female , Healthy Volunteers , Heart/physiology , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography , Male , Motion , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity
11.
Magn Reson Med ; 77(1): 209-220, 2017 01.
Article in English | MEDLINE | ID: mdl-26778549

ABSTRACT

PURPOSE: To develop a technique for high-resolution diffusion-weighted imaging (DWI) and to compare it with standard DWI methods. METHODS: Multiple in-plane bands of magnetization were simultaneously excited by identically phase modulating each subpulse of a two-dimensional (2D) RF pulse. Several excitations with the same multiband pattern progressively shifted in the phase-encode direction were used to cover the prescribed field of view (FOV). The phase-encoded FOV was limited to the width of a single band to reduce off-resonance-induced distortion and blurring. Parallel imaging (PI) techniques were used to resolve aliasing from the other bands and to combine the different excitations. Following validation in phantoms and healthy volunteers, a preliminary study in breast cancer patients (N=14) was performed to compare the proposed method to conventional DWI with PI and to reduced-FOV DWI. RESULTS: The proposed method gave high-resolution diffusion-weighted images with minimal artifacts at the band intersections. Compared to PI alone, higher phase-encoded FOV-reduction factors and reduced noise amplification were obtained, which translated to higher resolution images than conventional (non-multiband) DWI. The same resolution and image quality achievable over targeted regions using existing reduced-FOV methods was obtained, but the proposed method also enables complete bilateral coverage. CONCLUSION: We developed an in-plane multiband technique for high-resolution DWI and compared its performance with other standard DWI methods. Magn Reson Med 77:209-220, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Breast/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Adult , Aged , Breast Neoplasms/diagnostic imaging , Female , Humans , Middle Aged , Phantoms, Imaging , Radio Waves , Reproducibility of Results , Young Adult
12.
Magn Reson Med ; 77(1): 229-236, 2017 01.
Article in English | MEDLINE | ID: mdl-26778689

ABSTRACT

PURPOSE: We propose a method to acquire B1 distribution plots by encoding in B1 instead of image space. Using this method, B1 data is acquired in a different way from traditional spatial B1 mapping, and allows for quick measurement of high dynamic range B1 data. METHODS: To encode in B1, we acquire multiple projections of a slice, each along the same direction, but using a different phase sensitivity to B1. Using a convex optimization formulation, we reconstruct histograms of the B1 distribution estimates of the slice. RESULTS: We verify in vivo B1 distribution measurements by comparing measured distributions to distributions calculated from reference spatial B1 maps using the Earth Mover's Distance. Phantom measurements using a surface coil show that for increased spatial B1 variations, measured B1 distributions using the proposed method more accurately estimate the distribution than a low-resolution spatial B1 map, resulting in a 37% Earth Mover's Distance decrease while using fewer measurements. CONCLUSION: We propose and validate the performance of a method to acquire B1 distribution information directly without acquiring a spatial B1 map. The method may provide faster estimates of a B1 field for applications that do not require spatial B1 localization, such as the transmit gain calibration of the scanner, particularly for high dynamic B1 ranges. Magn Reson Med 77:229-236, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Humans , Phantoms, Imaging
13.
Magn Reson Med ; 78(2): 664-669, 2017 08.
Article in English | MEDLINE | ID: mdl-27555219

ABSTRACT

PURPOSE: To create a B0 map and correct for off-resonance with minimal scan time increase for two-dimensional (2D) or 3D non-Cartesian acquisitions. METHODS: Rewinding trajectories that bring the zeroth gradient moment to zero every repetition time (TR) were used to estimate the off-resonance with a center-out 3D cones trajectory, which required an increase in the minimum TR by 5%. The off-resonance estimation and correction was implemented using an algorithm based on binning and object-domain phase correction. B0 maps using BMART (B0 mapping using rewinding trajectories) were compared to maps obtained using separate scans with multiple echo time (TE) in a phantom and human brain. RESULTS: Excellent agreement between BMART and the multiple-TE method were observed, and images corrected with BMART were deblurred. CONCLUSION: BMART can correct for off-resonance without requiring an additional scan, and can be easily applied to center-out or projection trajectories (2D or 3D). Magn Reson Med 78:664-669, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Computer Simulation , Humans , Phantoms, Imaging
14.
Magn Reson Med ; 76(6): 1668-1676, 2016 12.
Article in English | MEDLINE | ID: mdl-27654126

ABSTRACT

PURPOSE: Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) using 2D echo-planar radiofrequency (2DRF) excitation has been widely and successfully applied in clinical settings. The purpose of this work is to further improve its clinical utility by overcoming slice coverage limitations without any scan time penalty while providing robust fat suppression. THEORY AND METHODS: During multislice imaging with 2DRF pulses, periodic sidelobes in the slice direction cause partial saturation, limiting the slice coverage. In this work, a tilting of the excitation plane is proposed to push the sidelobes out of the imaging section while preserving robust fat suppression. The 2DRF pulse is designed using Shinnar-Le Roux algorithm on a rotated excitation k-space. The performance of the method is validated via simulations, phantom experiments, and high in-plane resolution in vivo DWI of the spinal cord. RESULTS: Results show that rFOV DWI using the tilted 2DRF pulse provides increased signal-to-noise ratio, extended coverage, and robust fat suppression, without any scan time penalty. CONCLUSION: Using a tilted 2DRF excitation, a high-resolution rFOV DWI method with robust fat suppression and unrestricted slice coverage is presented. This method will be beneficial in clinical applications needing large slice coverage, for example, axial imaging of the spine, prostate, or breast. Magn Reson Med 76:1668-1676, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Adipose Tissue/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Subtraction Technique , Algorithms , Diffusion Magnetic Resonance Imaging/instrumentation , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
15.
Magn Reson Med ; 75(3): 1262-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25846905

ABSTRACT

PURPOSE: Accurate measurement of the nonuniform transmit radiofrequency field is necessary for magnetic resonance imaging applications. The radiofrequency field excitation amplitude (B1) is often obtained by acquiring a B1 map. We modify the B1 estimation using adiabatic refocusing (BEAR) method to extend its range to lower B1 magnitudes. THEORY AND METHODS: The BEAR method is a phase-based B1 mapping method, wherein hyperbolic secant pulses induce a phase sensitivity to B1. The measurable B1 range is limited due to the adiabatic threshold of the pulses. We redesign the method to use flattened hyperbolic secant pulses, which have lower adiabatic thresholds. We optimize the flattened hyperbolic secant parameters to minimize phase sensitivity to frequency variations. RESULTS: We validate the performance of the new method via simulation and in vivo at 3T, and show that for n ≤ 8, accurate B1 maps can be acquired using reduced nominal peak B1 values. CONCLUSION: The adiabatic threshold for the BEAR method is reduced with flattened hyperbolic secant pulses, which are optimized for accurate phase-to-B1 mapping over a frequency range, and allow for lower nominal B1 values. At 3T, the nominal B1 is decreased by 52% and the sensitivity to B1 is increased by a factor of 3.8. This can improve the method's applicability for measurement of low B1.


Subject(s)
Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Brain/diagnostic imaging , Humans , Phantoms, Imaging
16.
Magn Reson Med ; 76(1): 197-205, 2016 07.
Article in English | MEDLINE | ID: mdl-26220204

ABSTRACT

PURPOSE: To develop a robust motion estimation method for free-breathing body MRI using dense coil arrays. METHODS: Self-navigating pulse sequences can measure subject motion without using external motion monitoring devices. With dense coil arrays, individual coil elements can provide localized motion estimates. An averaged motion estimate over all coils is often used for motion compensation. However, this motion estimate may not accurately represent the dominant motion within the imaging volume. In this work, a coil clustering method is proposed to automatically determine the dominant motion for dense coil arrays. The feasibility of the proposed method is investigated in free-breathing abdominal MRI and cardiac MRI, and compared with manual motion estimate selection for respiratory motion estimation and electrocardiography for cardiac motion estimation. RESULTS: Automated motion estimation achieved similar respiratory motion estimation compared to manual selection (averaged correlation coefficient 0.989 and 0.988 for abdominal MRI and cardiac MRI, respectively), and accurate cardiac triggering compared to electrocardiography (averaged temporal variability 17.5 ms). CONCLUSION: The proposed method can provide accurate automated motion estimation for body MRI using dense coil arrays. It can enable self-navigated free-breathing abdominal and cardiac MRI without the need for external motion monitoring devices. Magn Reson Med 76:197-205, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Artifacts , Cardiac-Gated Imaging Techniques/instrumentation , Cardiac-Gated Imaging Techniques/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Respiratory-Gated Imaging Techniques/instrumentation , Respiratory-Gated Imaging Techniques/methods , Equipment Design , Humans , Image Enhancement/instrumentation , Image Enhancement/methods , Magnetics/instrumentation , Magnetics/methods , Motion , Movement , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
17.
Magn Reson Med ; 74(3): 614-21, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26172829

ABSTRACT

PURPOSE: To improve the spatial/temporal resolution of whole-heart coronary MR angiography by developing a variable-density (VD) 3D cones acquisition suitable for image reconstruction with parallel imaging and compressed sensing techniques. METHODS: A VD 3D cones trajectory design incorporates both radial and spiral trajectory undersampling techniques to achieve higher resolution. This design is used to generate a VD 3D cones trajectory with 0.8 mm/66 ms isotropic spatial/temporal resolution, using a similar number of readouts as our previous fully sampled cones trajectory (1.2 mm/100 ms). Scans of volunteers and patients are performed to evaluate the performance of the VD trajectory, using non-Cartesian L1 -ESPIRiT for high-resolution image reconstruction. RESULTS: With gridding reconstruction, the high-resolution scans experience an expected drop in signal-to-noise and contrast-to-noise ratios, but with L1 -ESPIRiT, the apparent noise is substantially reduced. Compared with 1.2 mm images, in each volunteer, the L1 -ESPIRiT 0.8 mm images exhibit higher vessel sharpness values in the right and left anterior descending arteries. CONCLUSION: Coronary MR angiography with isotropic submillimeter spatial resolution and high temporal resolution can be performed with VD 3D cones to improve the depiction of coronary arteries.


Subject(s)
Coronary Angiography/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Aged , Female , Humans , Male , Middle Aged , Phantoms, Imaging , Signal-To-Noise Ratio
18.
Magn Reson Med ; 74(3): 727-38, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25203505

ABSTRACT

PURPOSE: To develop a new sequence for non-contrast-enhanced peripheral angiography using a sliding interleaved cylinder (SLINCYL) acquisition. METHODS: A venous saturation pulse was incorporated into a three-dimensional magnetization-prepared balanced steady-state free precession sequence for non-contrast-enhanced peripheral angiography to improve artery-vein contrast. The SLINCYL acquisition, which consists of a series of overlapped thin slabs for volumetric coverage similar to the original sliding interleaved ky (SLINKY) acquisition, was used to evenly distribute the venous-suppression effects over the field of view. In addition, the thin-slab-scan nature of SLINCYL and the centric-ordered sampling geometry of its readout trajectory were exploited to implement efficient fluid-suppression and parallel imaging schemes. The sequence was tested in healthy subjects and a patient. RESULTS: Compared to a multiple overlapped thin slab acquisition, both SLINKY and SLINCYL suppressed the venetian blind artifacts and provided similar artery-vein contrast. However, SLINCYL achieved this with shorter scan times and less noticeable artifacts from k-space amplitude modulation than SLINKY. The fluid-suppression and parallel imaging schemes were also validated. A patient study using the SLINCYL-based sequence well identified stenoses at the superficial femoral arteries, which were also confirmed with digital subtraction angiography. CONCLUSION: Non-contrast-enhanced angiography using SLINCYL can provide angiograms with improved artery-vein contrast in the lower extremities.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Aged , Artifacts , Humans , Male , Thigh/blood supply
19.
Magn Reson Med ; 74(6): 1632-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25521477

ABSTRACT

PURPOSE: To develop a magnetization preparation sequence for simultaneous outer volume suppression (OVS) and T2 weighting in whole-heart coronary magnetic resonance angiography. METHODS: A combined OVS and T2 preparation sequence (OVS-T2 Prep) was designed with a nonselective adiabatic 90° tipdown pulse, two adiabatic 180° refocusing pulses, and a 2D spiral -90° tipup pulse. The OVS-T2 Prep preserves the magnetization inside an elliptic cylinder with T2 weighting, while saturating the magnetization outside the cylinder. Its performance was tested on phantoms and on 13 normal subjects with coronary magnetic resonance angiography using 3D cones trajectories. RESULTS: Phantom studies showed expected T2 -dependent signal amplitude in the spatial passband and suppressed signal in the spatial stopband. In vivo studies with full-field-of-view cones yielded a passband-to-stopband signal ratio of 3.18 ± 0.77 and blood-myocardium contrast-to-noise ratio enhancement by a factor of 1.43 ± 0.20 (P < 0.001). In vivo studies with reduced-field-of-view cones showed that OVS-T2 Prep well suppressed the aliasing artifacts, as supported by significantly reduced signal in the regions with no tissues compared to the images acquired without preparation (P < 0.0001). CONCLUSION: OVS-T2 Prep is a compact sequence that can accelerate coronary magnetic resonance angiography by suppressing signals from tissues surrounding the heart while simultaneously enhancing the blood-myocardium contrast.


Subject(s)
Artifacts , Coronary Angiography/methods , Coronary Vessels/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Adult , Female , Humans , Imaging, Three-Dimensional/methods , Male , Sensitivity and Specificity , Signal Processing, Computer-Assisted
20.
Magn Reson Med ; 73(5): 1764-74, 2015 May.
Article in English | MEDLINE | ID: mdl-24806049

ABSTRACT

PURPOSE: To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. METHODS: Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. RESULTS: The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). CONCLUSION: The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP.


Subject(s)
Cardiac-Gated Imaging Techniques , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Algorithms , Female , Humans , Male , Meglumine/analogs & derivatives , Myocardial Contraction/physiology , Organometallic Compounds , Reference Values , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...