Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Main subject
Publication year range
1.
Nano Lett ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722094

ABSTRACT

Diamond is considered the most promising next-generation semiconductor material due to its excellent physical characteristics. It has been more than three decades since the discovery of a special structure named n-diamond. However, despite extensive efforts, its crystallographic structure and properties are still unclear. Here, we show that subdisordered structures in diamond provide an explanation for the structural feature of n-diamond. Monocrystalline diamond with subdisordered structures is synthesized via the chemical vapor deposition method. Atomic-resolution scanning transmission electron microscopy characterizations combined with the picometer-precision peak finder technology and diffraction simulations reveal that picometer-scale shifts of atoms within cells of diamond govern the subdisordered structures. First-principles calculations indicate that the bandgap of diamond decreases rapidly with increasing shifting distance, in accordance with experimental results. These findings clarify the crystallographic structure and electronic properties of n-diamond and provide new insights into the bandgap adjustment in diamond.

2.
Materials (Basel) ; 17(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38730935

ABSTRACT

Diamond-like carbon (DLC) coatings are effective in protecting the key components of marine equipment and can greatly improve their short-term performance (1.5~4.5 h). However, the lack of investigation into their long-term (more than 200 h) performance cannot meet the service life requirements of marine equipment. Here, three multilayered DLC coatings, namely Ti/DLC, TiCx/DLC, and Ti-TiCx/DLC, were prepared, and their long-term corrosion resistance was investigated. Results showed that the corrosion current density of all DLC coatings was reduced by 1-2 orders of magnitude compared with bare 316L stainless steel (316Lss). Moreover, under long-term (63 days) immersion in a 3.5 wt.% NaCl solution, all DLC coatings could provide excellent long-term corrosion protection for 316Lss, and Ti-TiCx/DLC depicted the best corrosion resistance; the polarization resistances remained at ~3.0 × 107 Ω·cm2 after immersion for 63 days, with more interfaces to hinder the penetration of the corrosive media. Meanwhile, during neutral salt spray (3000 h), the corrosion resistance of Ti/DLC and TiCx/DLC coatings showed a certain degree of improvement because the insoluble corrosion products at the defects blocked the subsequent corrosion. This study can provide a route to designing amorphous carbon protective coatings for long-term marine applications in different environments.

3.
ACS Appl Mater Interfaces ; 16(6): 7732-7741, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306189

ABSTRACT

The implementation of passive cooling strategies is crucial for transitioning from the current high-power- and energy-intensive thermal management practices to more environmentally friendly and carbon-neutral alternatives. Among the various approaches, developing thermal management materials with high thermal conductivity and emissivity for effective cooling of personal and wearable devices in both indoor and outdoor settings poses significant challenges. In this study, we successfully fabricated a cooling patch by combining biodegradable silk fibroin with boron nitride nanosheets. This patch exhibits consistent heat dissipation capabilities under different ambient conditions. Leveraging its excellent radiative cooling efficiency (Rsolar = 0.89 and εLWIR = 0.84) and high thermal conductivity (in-plane 27.58 W m-1 K-1 and out-plane 1.77 W m-1 K-1), the cooling patch achieves significant simulated skin temperature reductions of approximately 2.5 and 8.2 °C in outdoor and indoor conditions, respectively. Furthermore, the film demonstrates excellent biosafety and can be recycled and reused for at least three months. This innovative BNNS/SF film holds great potential for advancing the field of personal thermal management materials.

4.
Small Methods ; : e2301288, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054606

ABSTRACT

Gallium oxide (Ga2 O3 ) usually fractures in the brittle form, and achieving large plastic deformability to avoid catastrophic failure is in high demand. Here, ε-Ga2 O3 thin films with columnar crystals and partial unoccupied Ga sites are synthesized, and it is demonstrated that the ε-Ga2 O3 at the submicron scale can be compressed to an ultra-large plastic strain of 48.5% without cracking. The compressive behavior and related mechanisms are investigated by in situ transmission electron microscope nanomechanical testing combined with atomic-resolution characterizations. The serrated plastic flow and large strain burst are two major deformation forms of ε-Ga2 O3 during compression, which are attributed to the dislocation nucleation and avalanches, formation of new grains, and amorphization. The ultra-large compressive plasticity of ε-Ga2 O3 thin films at the submicron scale can inspire new applications of Ga2 O3 in micro- or nano- electronic and optoelectronic devices, especially those that require impact resistance during processing or service.

5.
Small ; 19(52): e2303933, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574266

ABSTRACT

Exploiting novel strategies for simultaneously harvesting ubiquitous, renewable, and easily accessible solar energy based on the photothermal effect, and efficiently storing the acquired thermal energy plays a vital role in revolutionizing the current fossil fuel-dominating energy structure. Developing black phosphorene-based phase-change composites with optimized photothermal conversion efficiencyand high latent heat is the most promising way to achieve efficient solar energy harvesting and rapid thermal energy storage. However, exfoliating high-quality black phosphorene nanosheets  remains challenging, Furthermore, an efficient strategy that can construct the aligned black phosphorene frameworks to maximize thermal conductivity enhancement is still lacking. Herein, high-quality black phosphorene nanosheets are prepared by an optimized exfoliating strategy. Meanwhile, by regulating the temperature gradient during freeze-casting, the framework consisting of shipshape aligned black phosphorene at long-range is successfully fabricated, improving the thermal conductivity of the poly(ethylene glycol) matrix up to 1.81 W m-1  K-1 at 20 vol% black phosphorene loading. The framework also endows the composite with excellent phase-change material encapsulation capacity and  high latent heat of 103.91 J g-1 . It is envisioned that the work advances the paradigm of contrasting frameworks with nanosheets toward controllable structure thermal enhancement of the composites.

6.
Adv Mater ; 35(31): e2211100, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36929098

ABSTRACT

The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat-transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high-performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m-1 K-1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by "bottom-up" processes (e.g., solution-based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20-65% of the theoretical value. Here, a "top-down" strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m-1 K-1 , reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m-1 K-1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat-transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state-of-the-art commercial TCA.

7.
Nanoscale Adv ; 5(3): 711-724, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36756511

ABSTRACT

Nano-filler reinforced polymer-based composites have attracted extensive attention in tribology; however, to date, it is still challenging to construct a favorable lubricating system with excellent compatibility, lubricity and durability using nano-filler reinforced polymer-based composites. Herein, sulfonated boron nitride nano-sheets (h-BN@PSDA) are prepared and used as nano-fillers for epoxy resins (EPs), to improve friction and wear along with thermal conductivity. Furthermore, inspired by the lubricating principle and structure of snail mucus, a solvent-free carbon dot-based nanofluid (F-CDs) is fabricated and used for the first time as the lubricant for h-BN@PSDA/EPs. Both poly (4-styrene sulfonate) and polyether amine grafted on the surface of F-CDs contribute to branched structures and multiple interfacial absorption effects. Extraordinarily low friction and wear are detected after long-term sliding. The average coefficient of friction and wear rate of h-BN@PSDA/EPs composites are reduced by 95.25% and 99.42% respectively, in the presence of the F-CD nanofluid, compared to that of EPs. Besides, the added h-BN nano-sheets increase the thermal conductivity (TC) of EPs from 0.178 to 0.194 W (m-1 K-1). The distinguished lubrication performances are likely due to the formation of a hybrid nanostructure of 0D F-CDs and 2D h-BN@PSDA together with the "rolling-sliding" and "self-mending" effects of added F-CDs.

8.
Nanomicro Lett ; 15(1): 9, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36484932

ABSTRACT

Developing advanced thermal interface materials (TIMs) to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices. Based on the ultra-high basal-plane thermal conductivity, graphene is an ideal candidate for preparing high-performance TIMs, preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM. However, the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory. In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved, another critical factor is the limited actual contact area leading to relatively high contact thermal resistance (20-30 K mm2 W-1) of the "solid-solid" mating interface formed by the vertical graphene and the rough chip/heat sink. To solve this common problem faced by vertically aligned graphene, in this work, we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces. Based on rational graphene orientation regulation in the middle tier, the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m-1 K-1. Additionally, we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a "liquid-solid" mating interface, significantly increasing the effective heat transfer area and giving a low contact thermal conductivity of 4-6 K mm2 W-1 under packaging conditions. This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.

9.
ACS Appl Mater Interfaces ; 14(42): 48091-48105, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36222465

ABSTRACT

Due to their excellent biocompatibility, outstanding mechanical properties, high strength-to-weight ratio, and good corrosion resistance, titanium (Ti) alloys are extensively used as implant materials in artificial joints. However, Ti alloys suffer from poor wear resistance, resulting in a considerably short lifetime. In this study, we demonstrate that the chemical self-assembly of novel two-dimensional (2D) diamond nanosheet coatings on Ti alloys combined with natural silk fibroin used as a novel lubricating fluid synergistically results in excellent friction and wear performance. Linear-reciprocating sliding tests verify that the coefficient of friction and the wear rate of the diamond nanosheet coating under silk fibroin lubrication are reduced by 54 and 98%, respectively, compared to those of the uncoated Ti alloy under water lubrication. The lubricating mechanism of the newly designed system was revealed by a detailed analysis of the involved microstructural and chemical changes. The outstanding tribological behavior was attributed to the establishment of artificial joint lubrication induced by the cross binding between the diamond nanosheets and silk fibroin. Additionally, excellent biocompatibility of the lubricating system was verified by cell viability, which altogether paves the way for the application of diamond coatings in artificial Ti joint implants.


Subject(s)
Fibroins , Fibroins/chemistry , Diamond , Titanium/chemistry , Materials Testing , Alloys/chemistry , Corrosion , Water , Surface Properties
10.
Nanoscale ; 14(31): 11171-11178, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35880701

ABSTRACT

Combining the advantages of high thermal conductivities and low graphene contents to fabricate polymer composites for applications in thermal management is still a great challenge due to the high defect degree of exfoliated graphene, the poor orientation of graphene in polymer matrices, and the horrible phonon scattering between graphene/graphene and graphene/polymer interfaces. Herein, mesoplasma chemical vapor deposition (CVD) technology was successfully employed to synthesize vertically aligned graphene nanowalls (GNWs), which are covalently bonded by high-quality CVD graphene nanosheets. The unique architecture leads to an excellent thermal enhancement capacity of the GNWs, and a corresponding composite film with a matrix of polyvinylidene fluoride (PVDF) presented a high through-plane thermal conductivity of 12.8 ± 0.77 W m-1 K-1 at a low filler content of 4.0 wt%, resulting in a thermal conductivity enhancement per 1 wt% graphene loading of 1659, which is far superior to that using conventional graphene structures as thermally conductive pathways. In addition, this composite exhibited an excellent capability in cooling a high-power light-emitting diode (LED) device under real application conditions. Our finding provides a new route to prepare high-performance thermal management materials with low filler loadings via the rational design of the microstructures/interfaces of graphene skeletons.

11.
ACS Nano ; 16(6): 9254-9266, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35674718

ABSTRACT

The rapid increase of operation speed, transmission efficiency, and power density of miniaturized devices leads to a rising demand for electromagnetic interference (EMI) shielding and thermal management materials in the semiconductor industry. Therefore, it is essential to improve both the EMI shielding and thermal conductive properties of commonly used polyolefin components (such as polyethylene (PE)) in electronic systems. Currently, melt compounding is the most common method to fabricate polyolefin composites, but the difficulty of filler dispersion and high resistance at the filler/filler or filler/matrix interface limits their properties. Here, a fold fabrication strategy was proposed to prepare PE composites by incorporation of a well-aligned, seamless graphene framework premodified with MXene nanosheets into the matrix. We demonstrate that the physical properties of the composites can be further improved at the same filler loading by nanoscale interface engineering: the formation of hydrogen bonds at the graphene/MXene interface and the development of a seamlessly interconnected graphene framework. The obtained PE composites exhibit an EMI shielding property of ∼61.0 dB and a thermal conductivity of 9.26 W m-1 K-1 at a low filler content (∼3 wt %, including ∼0.4 wt % MXene). Moreover, other thermoplastic composites with the same results can also be produced based on our method. Our study provides an idea toward rational design of the filler interface to prepare high-performance polymer composites for use in microelectronics and microsystems.

12.
Nanoscale ; 14(27): 9743-9753, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35765953

ABSTRACT

For effective heat dissipation in portable electronics, there is a great demand for lightweight and flexible films with superior thermal transport properties. Despite extensive efforts, enhancing the intrinsic low thermal conductivity of polymers while simultaneously maintaining their flexibility is difficult to achieve due to the dilemma of quarrying appropriate filler loading. Herein, a cellulose nanofiber-based film with high in-plane thermal conductivity up to 72.53 W m-1 K-1 was obtained by harnessing the advantage of functionalized boron nitride nanosheets (f-BNNS) and black phosphorene (BP) via the vacuum filtration process. Besides, our unique design based on the electrostatic coupling of black phosphorene and functionalized boron nitride nanosheets significantly reduced the interfacial thermal resistance of the composite films. This work offers new insights into establishing a facile, yet efficient approach to preparing high thermal conductive heat spreaders.

13.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885590

ABSTRACT

Bulk diamonds show great potential for optical applications such as for use in infrared (IR) windows and temperature sensors. The development of optical-grade bulk diamond synthesis techniques has facilitated its extreme applications. Here, two kinds of bulk single-crystal diamonds, a high-pressure and high-temperature (HPHT) diamond and a chemical vapor deposition (CVD) diamond, were evaluated by Raman spectroscopy and Fourier Transform Infra-Red (FTIR) spectroscopy at a range of temperatures from 80 to 1200 K. The results showed that there was no obvious difference between the HPHT diamond and the CVD diamond in terms of XRD and Raman spectroscopy at 300-1200 K. The measured nitrogen content was ~270 and ~0.89 ppm for the HPHT diamond and the CVD diamond, respectively. The moderate nitrogen impurities did not significantly affect the temperature dependence of Raman spectra for temperature-sensing applications. However, the nitrogen impurities greatly influence FTIR spectroscopy and optical transmittance. The CVD diamond showed higher transmittance, up to 71% with only a ~6% drop at temperatures as high as 873 K. This study shows that CVD bulk diamonds can be used for IR windows under harsh environments.

14.
Nanoscale ; 13(44): 18657-18664, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34734962

ABSTRACT

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing the thermal conductivity of polymer composites. In this work, a three-dimensional porous diamond framework was prepared by depositing nano-crystalline diamond on alumina foam which was impregnated with epoxy to obtain a nano-crystalline diamond@alumina foam/epoxy composite. The epoxy composite with nano-crystalline diamond@alumina foam demonstrated a thermal conductivity of 2.21 W m-1 K-1, which was increased by 1063% in comparison with pure epoxy. The thermal conductivity of the epoxy composite measured under various conditions and heat transport applications demonstrates that it possesses excellent thermal transportation and stability properties. This work provides a new idea to significantly enhance the thermal transportation properties of epoxy composites in the application of advanced packaging materials.

15.
Nanomaterials (Basel) ; 9(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703273

ABSTRACT

The nitrogen-vacancy (NV) color center in chemical vapor deposition (CVD) diamond has been widely investigated in quantum information and quantum biosensors due to its excellent photon emission stability and long spin coherence time. However, the temperature dependence of the energy level of NV color centers in diamond is different from other semiconductors with the same diamond cubic structure for the high Debye temperature and very small thermal expansion coefficient of diamond. In this work, a diamond sensor for temperature measurement with high precision was fabricated based on the investigation of the energy level shifts of NV centers by Raman and photoluminescence (PL) spectra. The results show that the intensity and linewidth of the zero-phonon line of NV centers highly depend on the environmental temperature, and the energy level shifts of NV centers in diamond follow the modified Varshni model very well, a model which is better than the traditional version. Accordingly, the NV color center shows the ability in temperature measurement with a high accuracy of up to 98%. The high dependence of NV centers on environmental temperature shows the possibility of temperature monitoring of NV center-based quantum sensors in biosystems.

16.
Nanoscale ; 11(38): 17600-17606, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31264666

ABSTRACT

High thermal conductivity polymer composites at low filler loading are of considerable interest because of their wide range of applications. The construction of three-dimensional (3D) interconnected networks can offer a high-efficiency increase for the thermal conductivity of polymer composites. In this work, a facile and scalable method to prepare graphene foam (GF) via sacrificial commercial polyurethane (PU) sponge templates was developed. Highly thermally conductive composites were then prepared by impregnating epoxy resin into the GF structure. An ultrahigh thermal conductivity of 8.04 W m-1 K-1 was obtained at a low graphene loading of 6.8 wt%, which corresponds to a thermal conductivity enhancement of about 4473% compared to neat epoxy. This strategy provides a facile, low-cost and scalable method to construct a 3D filler network for high-performance composites with potential to be used in advanced electronic packaging.

17.
Sci Rep ; 7(1): 2606, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572604

ABSTRACT

In this study, we report a facile approach to fabricate epoxy composite incorporated with silicon carbide nanowires (SiC NWs). The thermal conductivity of epoxy/SiC NWs composites was thoroughly investigated. The thermal conductivity of epoxy/SiC NWs composites with 3.0 wt% filler reached 0.449 Wm-1 K-1, approximately a 106% enhancement as compared to neat epoxy. In contrast, the same mass fraction of silicon carbide micron particles (SiC MPs) incorporated into epoxy matrix showed less improvement on thermal conduction properties. This is attributed to the formation of effective heat conduction pathways among SiC NWs as well as a strong interaction between the nanowires and epoxy matrix. In addition, the thermal properties of epoxy/SiC NWs composites were also improved. These results demonstrate that we developed a novel approach to enhance the thermal conductivity of the polymer composites which meet the requirement for the rapid development of the electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...