Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ACS Photonics ; 11(4): 1673-1683, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38645995

ABSTRACT

High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.

2.
J Phys Chem Lett ; 13(48): 11169-11175, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36445180

ABSTRACT

Dissociation of the ethylene cation is a prototypical multistep pathway in which the exact mechanisms leading to internal energy conversions are not fully known. For example, it is still unclear how the energy is exactly redistributed among the internal modes and which step is rate-determining. Here we use few-femtosecond extreme-ultraviolet pulses of tunable energy to excite a different superposition of the four lowest states of C2H4+ and probe the subsequent fast relaxation with a short infrared pulse. Our results demonstrate that the infrared pulse photoexcites the cationic ground state (GS) to higher excited states, producing a hot GS upon relaxation, which enhances the fragmentation yield. As the photoexcitation probability of the GS strongly depends on the molecular geometry, the probing by the IR pulse provides information about the ultrafast excited-state dynamics and the type of conical intersection (planar or twisted) involved in the first 20 fs of the nonradiative relaxation.

3.
Nat Commun ; 13(1): 7103, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402766

ABSTRACT

The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.

4.
Opt Express ; 30(8): 12248-12267, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472864

ABSTRACT

The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply affects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spectroscopy techniques have demonstrated the possibility to observe the early-stage exciton dynamics, the description of the underlying exciton properties remains non-trivial. In this work we propose a new method called extended Ptychographic Iterative engine for eXcitons (ePIX), capable of reconstructing the main physical properties which determine the evolution of the quasi-particle with no prior knowledge of the exact relaxation dynamics or the pump temporal characteristics. By demonstrating its accuracy even when the exciton dynamics is comparable to the pump pulse duration, ePIX is established as a powerful approach to widen our knowledge of solid-state physics.

5.
Rep Prog Phys ; 85(6)2022 May 05.
Article in English | MEDLINE | ID: mdl-35294930

ABSTRACT

Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.

6.
Phys Chem Chem Phys ; 23(47): 26793-26805, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34816853

ABSTRACT

The electronic energy levels of cyclo(glycine-phenylalanine), cyclo(tryptophan-tyrosine) and cyclo(tryptophan-tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer-rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree-Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantum-chemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method.


Subject(s)
Density Functional Theory , Dipeptides/chemistry , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Phenylalanine/chemistry , Tryptophan/chemistry , Electrons , Gases/chemistry
7.
Nat Commun ; 12(1): 1021, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33589638

ABSTRACT

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhibit a dual atomic- and solid-like character, which manifests itself on different time scales. While the former is responsible for a femtosecond optical Stark effect, the latter dominates the attosecond excitonic response. Further theoretical investigation reveals a link with the exciton sub-femtosecond nanometric motion and allows us to envision a new route to control exciton dynamics in the close-to-petahertz regime.

8.
Commun Chem ; 4(1): 73, 2021 May 20.
Article in English | MEDLINE | ID: mdl-36697766

ABSTRACT

Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse. We find that the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.

9.
Rev Sci Instrum ; 91(5): 053002, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32486725

ABSTRACT

We present an innovative beamline for extreme ultraviolet (XUV)-infrared (IR) pump-probe reflection spectroscopy in solids with attosecond temporal resolution. The setup uses an actively stabilized interferometer, where attosecond pulse trains or isolated attosecond pulses are produced by high-order harmonic generation in gases. After collinear recombination, the attosecond XUV pulses and the femtosecond IR pulses are focused twice in sequence by toroidal mirrors, giving two spatially separated interaction regions. In the first region, the combination of a gas target with a time-of-flight spectrometer allows for attosecond photoelectron spectroscopy experiments. In the second focal region, an XUV reflectometer is used for attosecond transient reflection spectroscopy (ATRS) experiments. Since the two measurements can be performed simultaneously, precise pump-probe delay calibration can be achieved, thus opening the possibility for a new class of attosecond experiments on solids. Successful operation of the beamline is demonstrated by the generation and characterization of isolated attosecond pulses, the measurement of the absolute reflectivity of SiO2, and by performing simultaneous photoemission/ATRS in Ge.

10.
Opt Express ; 28(7): 10210-10224, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225611

ABSTRACT

Frequency-resolved optical gating for the complete reconstruction of attosecond bursts (FROG-CRAB) is a well-known technique for the complete temporal characterization of ultrashort extreme ultraviolet (XUV) pulses, with durations down to a few tens of attoseconds. Recently, this technique was extended to few-femtosecond XUV pulses, produced by high-order harmonic generation (HHG) in gases, thanks to the implementation of a robust iterative algorithm: the extended ptychographic iterative engine (ePIE). We demonstrate, by using numerical simulations, that the ptychographic reconstruction technique is characterized by an excellent degree of convergence and robustness. We analyse the effects on pulse reconstruction of various experimental imperfections, namely, the jitter of the relative temporal delay between the XUV pulse and a suitably delayed infrared (IR) pulse and the noise of the measured FROG-CRAB spectrograms. We also show that the ePIE approach is particularly suitable for the reconstruction of incomplete FROG-CRAB spectrograms (i.e., spectrograms with a reduced number of measured time delays) and of spectrograms acquired with a reduced spectral resolution, particularly when relatively high-intensity IR pulses are employed.

11.
Opt Lett ; 44(6): 1308-1311, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874637

ABSTRACT

We demonstrate the generation of few-cycle deep ultraviolet pulses via frequency upconversion of 5-fs near-infrared pulses in argon using a laser-fabricated gas cell. The measured spectrum extends from 210 to 340 nm, corresponding to a transform-limited pulse duration of 1.45 fs. We extract from a dispersion-free second-order cross-correlation measurement a pulse duration of 1.9 fs, defining a new record in the deep ultraviolet spectral range.

12.
J Phys Chem Lett ; 9(16): 4570-4577, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30044916

ABSTRACT

Attosecond pump-probe experiments performed in small molecules have allowed tracking charge dynamics in the natural time scale of electron motion. That this is also possible in biologically relevant molecules is still a matter of debate, because the large number of available nuclear degrees of freedom might destroy the coherent charge dynamics induced by the attosecond pulse. Here we investigate extreme ultraviolet-induced charge dynamics in the amino acid tryptophan. We find that, although nuclear motion and nonadiabatic effects introduce some decoherence in the moving electron wave packet, these do not significantly modify the coherence induced by the attosecond pulse during the early stages of the dynamics, at least for molecules in their equilibrium geometry. Our conclusions are based on elaborate theoretical calculations and the experimental observation of sub-4 fs dynamics, which can only be reasonably assigned to electronic motion. Hence, attosecond pump-probe spectroscopy appears as a promising approach to induce and image charge dynamics in complex molecules.

13.
Opt Express ; 26(6): 6771-6784, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609365

ABSTRACT

Sub-10-fs pulses tunable in the extreme-ultraviolet (XUV) spectral region are particularly important in many research fields: from atomic and molecular spectroscopy to the study of relaxation processes in solids and transition phase processes, from holography to free-electron laser injection. A crucial prerequisite for all applications is the accurate measurement of the temporal characteristics of these pulses. To fulfill this purpose, many phase retrieval algorithms have been successfully applied to reconstruct XUV attosecond pulses. Nevertheless, their extension to XUV femtosecond pulses is not trivial and has never been investigated/reported so far. We demonstrate that ultrashort XUV pulses, produced by high-order harmonic generation, spectrally filtered by a time-delay compensated monochromator, can be fully characterized, in terms of temporal intensity and phase, by employing the ptychographic reconstruction technique while other common reconstruction algorithms fail. This allows us to report on the generation and complete temporal characterization of XUV pulses with duration down to 5 fs, which constitute the shortest XUV pulse ever achieved via a time-delay compensated monochromator.

14.
Nat Commun ; 9(1): 302, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29335531

ABSTRACT

In the original version of this Article, the affiliation for Luca Poletto was incorrectly given as 'European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Hamburg, Germany', instead of the correct 'CNR, Istituto di Fotonica e Nanotecnologie Padova, Via Trasea 7, 35131 Padova, Italy'. This has now been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 8(1): 493, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887513

ABSTRACT

Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

16.
Chem Rev ; 117(16): 10760-10825, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28488433

ABSTRACT

Advances in attosecond science have led to a wealth of important discoveries in atomic, molecular, and solid-state physics and are progressively directing their footsteps toward problems of chemical interest. Relevant technical achievements in the generation and application of extreme-ultraviolet subfemtosecond pulses, the introduction of experimental techniques able to follow in time the electron dynamics in quantum systems, and the development of sophisticated theoretical methods for the interpretation of the outcomes of such experiments have raised a continuous growing interest in attosecond phenomena, as demonstrated by the vast literature on the subject. In this review, after introducing the physical mechanisms at the basis of attosecond pulse generation and attosecond technology and describing the theoretical tools that complement experimental research in this field, we will concentrate on the application of attosecond methods to the investigation of ultrafast processes in molecules, with emphasis in molecules of chemical and biological interest. The measurement and control of electronic motion in complex molecular structures is a formidable challenge, for both theory and experiment, but will indubitably have a tremendous impact on chemistry in the years to come.

17.
Opt Express ; 23(8): 9858-69, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969027

ABSTRACT

An all-optical method is proposed for the measurement of the spectral phase of isolated attosecond pulses. The technique is based on the generation of extreme-ultraviolet (XUV) radiation in a gas by the combination of an attosecond pulse and a strong infrared (IR) pulse with controlled electric field. By using a full quantum simulation, we demonstrate that, for particular temporal delays between the two pulses, the IR field can drive back to the parent ions the photoelectrons generated by the attosecond pulse, thus leading to the generation of XUV photons. It is found that the generated XUV spectrum is notably sensitive to the chirp of the attosecond pulse, which can then be reliably retrieved. A classical quantum-path analysis is further used to quantitatively explain the main features exhibited in the XUV emission.

18.
Opt Lett ; 39(8): 2302-5, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24978978

ABSTRACT

We demonstrate a simple and robust single-shot interferometric technique that allows the in situ measurement of intensity-dependent phase changes experienced by ultrashort laser pulses upon nonlinear propagation. The technique is applied to the characterization of carrier-envelope phase noise in hollow fiber compressors both in the pressure gradient and in the static cell configuration. Measurements performed simultaneously with conventional f-to-2f interferometers before and after compression indicate that the noise emerging in the waveguide adds up arithmetically to the phase noise of the amplifier, thus being strongly correlated to the phase noise of the pulses coupled into the compressor.

19.
Phys Rev Lett ; 111(12): 123901, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093261

ABSTRACT

The attosecond streak camera method is usually implemented to characterize the temporal phase and amplitude of isolated attosecond pulses produced by high-order harmonic generation. This approach, however, does not provide any information about the carrier-envelope phase of the attosecond pulses. We demonstrate that the photoelectron spectra generated by an attosecond waveform and an intense synchronized infrared field are sensitive to the electric field of the attosecond pulse. The dependence on the carrier-envelope phase of the attosecond pulse is understood in terms of the coherent superposition of two photoelectron wave packets. This effect suggests an experimentally feasible method for complete reconstruction of attosecond waveforms.

20.
J Phys Chem Lett ; 3(24): 3751-4, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-26291106

ABSTRACT

We present the first direct measurement of ultrafast charge migration in a biomolecular building block - the amino acid phenylalanine. Using an extreme ultraviolet pulse of 1.5 fs duration to ionize molecules isolated in the gas phase, the location of the resulting hole was probed by a 6 fs visible/near-infrared pulse. By measuring the yield of a doubly charged ion as a function of the delay between the two pulses, the positive hole was observed to migrate to one end of the cation within 30 fs. This process is likely to originate from even faster coherent charge oscillations in the molecule being dephased by bond stretching which eventually localizes the final position of the charge. This demonstration offers a clear template for observing and controlling this phenomenon in the future.

SELECTION OF CITATIONS
SEARCH DETAIL