Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(12): e1011838, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048355

ABSTRACT

Influenza A viruses are RNA viruses that cause epidemics in humans and are enzootic in the pig population globally. In 2009, pig-to-human transmission of a reassortant H1N1 virus (H1N1pdm09) caused the first influenza pandemic of the 21st century. This study investigated the infection dynamics, pathogenesis, and lesions in pigs and ferrets inoculated with natural isolates of swine-adapted, human-adapted, and "pre-pandemic" H1N1pdm09 viruses. Additionally, the direct-contact and aerosol transmission properties of the three H1N1pdm09 isolates were assessed in ferrets. In pigs, inoculated ferrets, and ferrets infected by direct contact with inoculated ferrets, the pre-pandemic H1N1pdm09 virus induced an intermediary viral load, caused the most severe lesions, and had the highest clinical impact. The swine-adapted H1N1pdm09 virus induced the highest viral load, caused intermediary lesions, and had the least clinical impact in pigs. The human-adapted H1N1pdm09 virus induced the highest viral load, caused the mildest lesions, and had the least clinical impact in ferrets infected by direct contact. The discrepancy between viral load and clinical impact presumably reflects the importance of viral host adaptation. Interestingly, the swine-adapted H1N1pdm09 virus was transmitted by aerosols to two-thirds of the ferrets. Further work is needed to assess the risk of human-to-human aerosol transmission of swine-adapted H1N1pdm09 viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Swine , Influenza A Virus, H1N1 Subtype/genetics , Ferrets , Respiratory Aerosols and Droplets , Reassortant Viruses/genetics
2.
Commun Biol ; 6(1): 1073, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865678

ABSTRACT

Assembly of reads from metagenomic samples is a hard problem, often resulting in highly fragmented genome assemblies. Metagenomic binning allows us to reconstruct genomes by re-grouping the sequences by their organism of origin, thus representing a crucial processing step when exploring the biological diversity of metagenomic samples. Here we present Adversarial Autoencoders for Metagenomics Binning (AAMB), an ensemble deep learning approach that integrates sequence co-abundances and tetranucleotide frequencies into a common denoised space that enables precise clustering of sequences into microbial genomes. When benchmarked, AAMB presented similar or better results compared with the state-of-the-art reference-free binner VAMB, reconstructing ~7% more near-complete (NC) genomes across simulated and real data. In addition, genomes reconstructed using AAMB had higher completeness and greater taxonomic diversity compared with VAMB. Finally, we implemented a pipeline Integrating VAMB and AAMB that enabled improved binning, recovering 20% and 29% more simulated and real NC genomes, respectively, compared to VAMB, with moderate additional runtime.


Subject(s)
Genome, Microbial , Metagenome , Metagenomics/methods , Cluster Analysis , Benchmarking
4.
Nat Biotechnol ; 41(3): 399-408, 2023 03.
Article in English | MEDLINE | ID: mdl-36593394

ABSTRACT

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.


Subject(s)
Deep Learning , Diabetes Mellitus, Type 2 , Humans , Algorithms , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics
5.
Emerg Infect Dis ; 28(12): 2561-2564, 2022 12.
Article in English | MEDLINE | ID: mdl-36418004

ABSTRACT

During routine surveillance at the National Influenza Center, Denmark, we detected a zoonotic swine influenza A virus in a patient who became severely ill. We describe the clinical picture and the genetic characterization of this variant virus, which is distinct from another variant found previously in Denmark.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Animals , Humans , Swine , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/genetics , Zoonoses/epidemiology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Denmark/epidemiology
6.
Nat Commun ; 13(1): 965, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181661

ABSTRACT

Despite the accelerating number of uncultivated virus sequences discovered in metagenomics and their apparent importance for health and disease, the human gut virome and its interactions with bacteria in the gastrointestinal tract are not well understood. This is partly due to a paucity of whole-virome datasets and limitations in current approaches for identifying viral sequences in metagenomics data. Here, combining a deep-learning based metagenomics binning algorithm with paired metagenome and metavirome datasets, we develop Phages from Metagenomics Binning (PHAMB), an approach that allows the binning of thousands of viral genomes directly from bulk metagenomics data, while simultaneously enabling clustering of viral genomes into accurate taxonomic viral populations. When applied on the Human Microbiome Project 2 (HMP2) dataset, PHAMB recovered 6,077 high-quality genomes from 1,024 viral populations, and identified viral-microbial host interactions. PHAMB can be advantageously applied to existing and future metagenomes to illuminate viral ecological dynamics with other microbiome constituents.


Subject(s)
Bacteriophages/classification , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/virology , Metagenome/genetics , Virome/genetics , Bacteriophages/genetics , Gastrointestinal Microbiome/physiology , Genome, Viral/genetics , Humans , Metagenomics , Virome/physiology
7.
Emerg Infect Dis ; 27(12): 3202-3205, 2021 12.
Article in English | MEDLINE | ID: mdl-34808097

ABSTRACT

A case of human infection with influenza A(H1N1)pdm09 virus containing a nonstructural gene highly similar to Eurasian avian-like H1Nx swine influenza virus was detected in Denmark in January 2021. We describe the clinical case and report testing results of the genetic and antigenic characterizations of the virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Aged , Animals , Denmark/epidemiology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Reassortant Viruses/genetics , Swine
8.
Front Neurosci ; 15: 646291, 2021.
Article in English | MEDLINE | ID: mdl-34220417

ABSTRACT

Impaired liver function may lead to hyperammonemia and risk for hepatic encephalopathy. In brain, detoxification of ammonia is mediated mainly by glutamine synthetase (GS) in astrocytes. This requires a continuous de novo synthesis of glutamate, likely involving the action of both pyruvate carboxylase (PC) and glutamate dehydrogenase (GDH). An increased PC activity upon ammonia exposure and the importance of PC activity for glutamine synthesis has previously been demonstrated while the importance of GDH for generation of glutamate as precursor for glutamine synthesis has received little attention. We therefore investigated the functional importance of GDH for brain metabolism during hyperammonemia. To this end, brain slices were acutely isolated from transgenic CNS-specific GDH null or litter mate control mice and incubated in aCSF containing [U-13C]glucose in the absence or presence of 1 or 5 mM ammonia. In another set of experiments, brain slices were incubated in aCSF containing 1 or 5 mM 15N-labeled NH4Cl and 5 mM unlabeled glucose. Tissue extracts were analyzed for isotopic labeling in metabolites and for total amounts of amino acids. As a novel finding, we reveal a central importance of GDH function for cerebral ammonia fixation and as a prerequisite for de novo synthesis of glutamate and glutamine during hyperammonemia. Moreover, we demonstrated an important role of the concerted action of GDH and alanine aminotransferase in hyperammonemia; the products alanine and α-ketoglutarate serve as an ammonia sink and as a substrate for ammonia fixation via GDH, respectively. The role of this mechanism in human hyperammonemic states remains to be studied.

9.
Viruses ; 13(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34065033

ABSTRACT

Since late 2020, outbreaks of H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4.4b have emerged in Europe. To investigate the evolutionary history of these viruses, we performed genetic characterization on the first HPAI viruses found in Denmark during the autumn of 2020. H5N8 viruses from 14 wild birds and poultry, as well as one H5N5 virus from a wild bird, were characterized by whole genome sequencing and phylogenetic analysis. The Danish H5N8 viruses were found to be genetically similar to each other and to contemporary European clade 2.3.4.4b H5N8 viruses, while the Danish H5N5 virus was shown to be a unique genotype from the H5N5 viruses that circulated at the same time in Russia, Germany, and Belgium. Genetic analyses of one of the H5N8 viruses revealed the presence of a substitution (PB2-M64T) that is highly conserved in human seasonal influenza A viruses. Our analyses showed that the late 2020 clade 2.3.4.4b HPAI H5N8 viruses were most likely new incursions introduced by migrating birds to overwintering sites in Europe, rather than the result of continued circulation of H5N8 viruses from previous introductions to Europe in 2016/2017 and early 2020.


Subject(s)
Genotype , Influenza A Virus, H5N8 Subtype/genetics , Influenza A virus/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Animals , Denmark/epidemiology , Disease Outbreaks , Genes, Viral , Genome, Viral , Geography, Medical , Humans , Influenza A Virus, H5N8 Subtype/classification , Influenza A virus/classification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Phylogeny , Population Surveillance , Poultry/virology
10.
Nat Biotechnol ; 39(5): 555-560, 2021 05.
Article in English | MEDLINE | ID: mdl-33398153

ABSTRACT

Despite recent advances in metagenomic binning, reconstruction of microbial species from metagenomics data remains challenging. Here we develop variational autoencoders for metagenomic binning (VAMB), a program that uses deep variational autoencoders to encode sequence coabundance and k-mer distribution information before clustering. We show that a variational autoencoder is able to integrate these two distinct data types without any previous knowledge of the datasets. VAMB outperforms existing state-of-the-art binners, reconstructing 29-98% and 45% more near-complete (NC) genomes on simulated and real data, respectively. Furthermore, VAMB is able to separate closely related strains up to 99.5% average nucleotide identity (ANI), and reconstructed 255 and 91 NC Bacteroides vulgatus and Bacteroides dorei sample-specific genomes as two distinct clusters from a dataset of 1,000 human gut microbiome samples. We use 2,606 NC bins from this dataset to show that species of the human gut microbiome have different geographical distribution patterns. VAMB can be run on standard hardware and is freely available at https://github.com/RasmussenLab/vamb .


Subject(s)
Genome, Bacterial/genetics , Metagenome/genetics , Molecular Sequence Annotation , Software , Bacteroides/genetics , Humans , Metagenomics , Microbiota/genetics
11.
Neurochem Res ; 45(6): 1420-1437, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32144526

ABSTRACT

Expression of the glutamate transporter GLT-1 in neurons has been shown to be important for synaptic mitochondrial function in the cerebral cortex. Here we determined whether neuronal GLT-1 plays a similar role in the hippocampus and striatum, using conditional GLT-1 knockout mice in which GLT-1 was inactivated in neurons by expression of synapsin-Cre (synGLT-1 KO). Ex vivo 13C-labelling using [1,2-13C]acetate, representing astrocytic metabolism, yielded increased [4,5-13C]glutamate levels, suggesting increased astrocyte-neuron glutamine transfer, in the striatum but not in the hippocampus of the synGLT-1 KO. Moreover, aspartate concentrations were reduced - 38% compared to controls in the hippocampus and the striatum of the synGLT-1 KO. Mitochondria isolated from the hippocampus of synGLT-1 KO mice exhibited a lower oxygen consumption rate in the presence of oligomycin A, indicative of a decreased proton leak across the mitochondrial membrane, whereas the ATP production rate was unchanged. Electron microscopy revealed reduced mitochondrial inter-cristae distance within excitatory synaptic terminals in the hippocampus and striatum of the synGLT-1 KO. Finally, dilution of 13C-labelling originating from [U-13C]glucose, caused by metabolism of unlabelled glutamate, was reduced in hippocampal synGLT-1 KO synaptosomes, suggesting that neuronal GLT-1 provides glutamate for synaptic tricarboxylic acid cycle metabolism. Collectively, these data demonstrate an important role of neuronal expression of GLT-1 in synaptic mitochondrial metabolism in the forebrain.


Subject(s)
Aspartic Acid/metabolism , Corpus Striatum/metabolism , Excitatory Amino Acid Transporter 2/deficiency , Hippocampus/metabolism , Mitochondria/metabolism , Synapses/metabolism , Animals , Corpus Striatum/ultrastructure , Excitatory Amino Acid Transporter 2/genetics , Hippocampus/ultrastructure , Homeostasis/physiology , Male , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/ultrastructure , Neurons/metabolism , Neurons/ultrastructure , Synapses/ultrastructure
12.
Front Public Health ; 8: 38, 2020.
Article in English | MEDLINE | ID: mdl-32158739

ABSTRACT

One Health surveillance of antimicrobial resistance (AMR) depends on a harmonized method for detection of AMR. Metagenomics-based surveillance offers the possibility to compare resistomes within and between different target populations. Its potential to be embedded into policy in the future calls for a timely and integrated knowledge dissemination strategy. We developed a blended training (e-learning and a workshop) on the use of metagenomics in surveillance of pathogens and AMR. The objectives were to highlight the potential of metagenomics in the context of integrated surveillance, to demonstrate its applicability through hands-on training and to raise awareness to bias factors. The target participants included staff of competent authorities responsible for AMR monitoring and academic staff. The training was organized in modules covering the workflow, requirements, benefits and challenges of surveillance by metagenomics. The training had 41 participants. The face-to-face workshop was essential to understand the expectations of the participants about the transition to metagenomics-based surveillance. After revision of the e-learning, we released it as a Massive Open Online Course (MOOC), now available at https://www.coursera.org/learn/metagenomics. This course has run in more than 20 sessions, with more than 3,000 learners enrolled, from more than 120 countries. Blended learning and MOOCs are useful tools to deliver knowledge globally and across disciplines. The released MOOC can be a reference knowledge source for international players in the application of metagenomics in surveillance.


Subject(s)
Anti-Bacterial Agents , Education, Distance , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Learning , Metagenomics
13.
Protein Eng Des Sel ; 32(3): 145-151, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31553452

ABSTRACT

While the field of computational protein design has witnessed amazing progression in recent years, folding properties still constitute a significant barrier towards designing new and larger proteins. In order to assess and improve folding properties of designed proteins, we have developed a genetics-based folding assay and selection system based on the essential enzyme, orotate phosphoribosyl transferase from Escherichia coli. This system allows for both screening of candidate designs with good folding properties and genetic selection of improved designs. Thus, we identified single amino acid substitutions in two failed designs that rescued poorly folding and unstable proteins. Furthermore, when these substitutions were transferred into a well-structured design featuring a complex folding profile, the resulting protein exhibited native-like cooperative folding with significantly improved stability. In protein design, a single amino acid can make the difference between folding and misfolding, and this approach provides a useful new platform to identify and improve candidate designs.


Subject(s)
Protein Engineering/methods , Protein Folding , Proteins/chemistry , Proteins/genetics , Amino Acid Sequence , Models, Molecular , Mutation , Protein Conformation
14.
Diab Vasc Dis Res ; 16(6): 539-548, 2019 11.
Article in English | MEDLINE | ID: mdl-31364402

ABSTRACT

Besides being a metabolic disease, diabetes is considered a vascular disease as many of the complications relate to vascular pathologies. The aim of this study was to investigate how vascular tone and reactivity and vascular cell metabolism were affected in type 2 diabetes mellitus and whether ß-hydroxybutyrate could have a positive effect as alternative energy substrate. Isolated mesenteric arteries of db/db and control mice were incubated in media containing [U-13C]glucose or [U-13C]ß-hydroxybutyrate, and tissue extracts were analysed by mass spectrometry. Functional characterization was performed by wire myography to assess vasodilation and vasocontraction. Hypermetabolism of glucose and ß-hydroxybutyrate was observed for mesenteric arteries of db/db mice; however, hypermetabolism was significant only with ß-hydroxybutyrate as energy substrate. The functional characterization showed impaired endothelial-dependent vasodilation in mesenteric arteries of the db/db mice, whereas the contractility was unaffected. This study provides evidence that the endothelial cells are impaired, whereas the vascular smooth muscle cells are more robust and seemed less affected in the db/db mouse. Furthermore, the results indicate that hypermetabolism of energy substrates may be due to adaptive changes in the mesenteric arteries.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/etiology , Endothelium, Vascular/metabolism , Energy Metabolism , Glucose/metabolism , Mesenteric Arteries/metabolism , Vasodilation , 3-Hydroxybutyric Acid/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Disease Models, Animal , Endothelium, Vascular/physiopathology , Mesenteric Arteries/physiopathology
15.
J Neurosci Res ; 97(8): 1004-1017, 2019 08.
Article in English | MEDLINE | ID: mdl-31044444

ABSTRACT

Diabetes impacts the central nervous system predisposing to cognitive decline. While glucose is the main source of energy fueling the adult brain, brain glycogen is necessary for adequate neuronal function, synaptic plasticity and memory. In this study, we tested the hypothesis that brain glycogen metabolism is impaired in type 2 diabetes (T2D). 13 C magnetic resonance spectroscopy (MRS) during [1-13 C]glucose i.v. infusion was employed to detect 13 C incorporation into whole-brain glycogen in male Goto-Kakizaki (GK) rats, a lean model of T2D, and control Wistar rats. Labeling from [1-13 C]glucose into brain glycogen occurred at a rate of 0.25 ± 0.12 and 0.48 ± 0.22 µmol/g/h in GK and Wistar rats, respectively (p = 0.028), despite similar brain glycogen concentrations. In addition, the appearance of [1-13 C]glucose in the brain was used to evaluate glucose transport and consumption. T2D caused a 31% reduction (p = 0.031) of the apparent maximum transport rate (Tmax ) and a tendency for reduced cerebral metabolic rate of glucose (CMRglc ; -29%, p = 0.062), indicating impaired glucose utilization in T2D. After MRS in vivo, gas chromatography-mass spectrometry was employed to measure regional 13 C fractional enrichment of glucose and glycogen in the cortex, hippocampus, striatum, and hypothalamus. The diabetes-induced reduction in glycogen labeling was most prominent in the hippocampus and hypothalamus, which are crucial for memory and energy homeostasis, respectively. These findings were further supported by changes in the phosphorylation rate of glycogen synthase, as analyzed by Western blotting. Altogether, the present results indicate that T2D is associated with impaired brain glycogen metabolism.


Subject(s)
Brain/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycogen/metabolism , Animals , Disease Models, Animal , Glucose Transporter Type 1/metabolism , Magnetic Resonance Spectroscopy , Male , Rats, Wistar
16.
J Neurosci ; 39(25): 4847-4863, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30926746

ABSTRACT

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.


Subject(s)
Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Homeostasis/physiology , Mitochondria/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Aspartic Acid/metabolism , Cerebral Cortex/metabolism , Excitatory Amino Acid Transporter 2/genetics , Mice , Mice, Knockout , Mitochondria/genetics , Oxygen Consumption/physiology , Presynaptic Terminals/metabolism , Synapses/genetics , Synaptosomes/metabolism
17.
Neural Plast ; 2017: 2107084, 2017.
Article in English | MEDLINE | ID: mdl-28695014

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a risk factor for the development of Alzheimer's disease, and changes in brain energy metabolism have been suggested as a causative mechanism. The aim of this study was to investigate the cerebral metabolism of the important amino acids glutamate and glutamine in the db/db mouse model of T2DM. Glutamate and glutamine are both substrates for mitochondrial oxidation, and oxygen consumption was assessed in isolated brain mitochondria by Seahorse XFe96 analysis. In addition, acutely isolated cerebral cortical and hippocampal slices were incubated with [U-13C]glutamate and [U-13C]glutamine, and tissue extracts were analyzed by gas chromatography-mass spectrometry. The oxygen consumption rate using glutamate and glutamine as substrates was not different in isolated cerebral mitochondria of db/db mice compared to controls. Hippocampal slices of db/db mice exhibited significantly reduced 13C labeling in glutamate, glutamine, GABA, citrate, and aspartate from metabolism of [U-13C]glutamate. Additionally, reduced 13C labeling were observed in GABA, citrate, and aspartate from [U-13C]glutamine metabolism in hippocampal slices of db/db mice when compared to controls. None of these changes were observed in cerebral cortical slices. The results suggest specific hippocampal impairments in glutamate and glutamine metabolism, without affecting mitochondrial oxidation of these substrates, in the db/db mouse.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Hippocampus/metabolism , Animals , Mice , Mitochondria/metabolism , Oxygen Consumption/physiology
18.
Phytochemistry ; 138: 52-56, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28279524

ABSTRACT

The medicinal plant Tripterygium wilfordii (Celastraceae) contains a pair of class II diterpene synthases (diTPS) of specialized labdane-type metabolism that, despite remarkably close homology, form strikingly different products. TwTPS21 catalyzes bicyclization of the linear C20 precursor geranylgeranyl diphosphate to ent-copal-8-ol diphosphate, while TwTPS14 forms kolavenyl diphosphate. To determine the amino acid signature controlling the functional divergence of the homologues, we modeled their structures based on an existing crystal structure of the Arabidopsis ent-copalyl diphosphate synthase, archetypal of diTPSs in general metabolism of gibberellin phytohormones. Of the residues differing between TwTPS21 and TwTPS14 two located to the predicted active site, and we hypothesized that these are responsible for the functional differentiation of the enzymes. Using site-directed mutagenesis, we generated a panel of six variants, where one, or both positions were exchanged between the enzymes. In coupled heterologous assays with a corresponding class I diTPS, TwTPS2, complete product interchange was observed in variants with both reciprocal mutations, while substitutions of either residue gave mixed product profiles. Two mutants, TwTPS14:Y265H and TwTPS21:A325V, also produced ent-copalyl diphosphate, highlighting the evolutionary potential of enzymes of this family to drive rapid diversification of plant diterpene biosynthesis through neo-functionalization. Our study contributes to the understanding of structure-function relation in plant class II diTPSs and complements previous mutational studies of Arabidopsis ent-copalyl diphosphate synthase with additional examples from the specialized metabolism of T. wilfordii.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Plant Proteins/chemistry , Tripterygium/enzymology , Amino Acid Substitution , Catalytic Domain , Molecular Structure , Mutagenesis, Site-Directed , Protein Structure, Tertiary
19.
J Cereb Blood Flow Metab ; 37(3): 1137-1147, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28058963

ABSTRACT

It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]ß-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-13C]acetate and [U-13C]ß-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Energy Metabolism , Ketone Bodies/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Brain/metabolism , Brain/ultrastructure , Cerebral Cortex/metabolism , Glucose/metabolism , Hippocampus/metabolism , Mice , Mice, Inbred Strains , Mitochondria/metabolism , Oxygen Consumption
20.
Neurochem Res ; 42(3): 810-826, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27933548

ABSTRACT

Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U-13C]glucose or [1,2-13C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13C-labeling observed with [U-13C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2-13C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13C-labeling (%) data obtained from mass spectrometry. Based on this approach we suggest that cellular metabolic compartmentation in hippocampus and cerebral cortex is very similar.


Subject(s)
Acetates/metabolism , Cerebral Cortex/metabolism , Glucose/metabolism , Hippocampus/metabolism , Animals , Astrocytes/metabolism , Carbon Isotopes , Glycolysis , In Vitro Techniques , Lactic Acid/metabolism , Mice , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...