Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Innate Immun ; 27(3): 251-259, 2021 04.
Article in English | MEDLINE | ID: mdl-33646896

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) is the most common respiratory pathogen in patients with chronic obstructive disease. Limited data is available investigating the impact of NTHi infections on cellular re-differentiation processes in the bronchial mucosa. The aim of this study was to assess the effects of stimulation with NTHi on the bronchial epithelium regarding cellular re-differentiation processes using primary bronchial epithelial cells harvested from infection-free patients undergoing bronchoscopy. The cells were then cultivated using an air-liquid interface and stimulated with NTHi and TGF-ß. Markers of epithelial and mesenchymal cells were analyzed using immunofluorescence, Western blot and qRT-PCR. Stimulation with both NTHi and TGF-ß led to a marked increase in the expression of the mesenchymal marker vimentin, while E-cadherin as an epithelial marker maintained a stable expression throughout the experiments. Furthermore, expression of collagen 4 and the matrix-metallopeptidases 2 and 9 were increased after stimulation, while the expression of tissue inhibitors of metallopeptidases was not affected by pathogen stimulation. In this study we show a direct pathogen-induced trans-differentiation of primary bronchial epithelial cells resulting in a co-localization of epithelial and mesenchymal markers and an up-regulation of extracellular matrix components.


Subject(s)
Bronchi/pathology , Haemophilus Infections/immunology , Haemophilus influenzae/physiology , Pulmonary Disease, Chronic Obstructive/immunology , Respiratory Mucosa/physiology , Aged , Cadherins/genetics , Cadherins/metabolism , Cell Transdifferentiation , Cells, Cultured , Collagen Type IV/genetics , Collagen Type IV/metabolism , Female , Humans , Male , Middle Aged , Transforming Growth Factor beta/metabolism , Up-Regulation , Vimentin/genetics , Vimentin/metabolism
2.
Clin Epigenetics ; 13(1): 38, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33596996

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death in most western countries in both, males and females, accounting for roughly 20-25% of all cancer deaths. For choosing the most appropriate therapy regimen a definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methylation analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at comparing aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens. RESULTS: We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with definite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classified with high accuracy. CONCLUSIONS: Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer even in histologically ambiguous sample material.


Subject(s)
Biopsy/methods , DNA Methylation , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Bronchoscopy/methods , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Case-Control Studies , Cohort Studies , CpG Islands , Diagnosis, Differential , Early Detection of Cancer/methods , Epigenome/genetics , Epigenomics , Female , Humans , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Neoplasm Staging/methods , Prognosis , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/genetics
3.
Eur Respir J ; 58(3)2021 09.
Article in English | MEDLINE | ID: mdl-33574078

ABSTRACT

BACKGROUND: The World Health Organization recommends standardised treatment durations for patients with tuberculosis (TB). We identified and validated a host-RNA signature as a biomarker for individualised therapy durations for patients with drug-susceptible (DS)- and multidrug-resistant (MDR)-TB. METHODS: Adult patients with pulmonary TB were prospectively enrolled into five independent cohorts in Germany and Romania. Clinical and microbiological data and whole blood for RNA transcriptomic analysis were collected at pre-defined time points throughout therapy. Treatment outcomes were ascertained by TBnet criteria (6-month culture status/1-year follow-up). A whole-blood RNA therapy-end model was developed in a multistep process involving a machine-learning algorithm to identify hypothetical individual end-of-treatment time points. RESULTS: 50 patients with DS-TB and 30 patients with MDR-TB were recruited in the German identification cohorts (DS-GIC and MDR-GIC, respectively); 28 patients with DS-TB and 32 patients with MDR-TB in the German validation cohorts (DS-GVC and MDR-GVC, respectively); and 52 patients with MDR-TB in the Romanian validation cohort (MDR-RVC). A 22-gene RNA model (TB22) that defined cure-associated end-of-therapy time points was derived from the DS- and MDR-GIC data. The TB22 model was superior to other published signatures to accurately predict clinical outcomes for patients in the DS-GVC (area under the curve 0.94, 95% CI 0.9-0.98) and suggests that cure may be achieved with shorter treatment durations for TB patients in the MDR-GIC (mean reduction 218.0 days, 34.2%; p<0.001), the MDR-GVC (mean reduction 211.0 days, 32.9%; p<0.001) and the MDR-RVC (mean reduction of 161.0 days, 23.4%; p=0.001). CONCLUSION: Biomarker-guided management may substantially shorten the duration of therapy for many patients with MDR-TB.


Subject(s)
Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Adult , Antitubercular Agents/therapeutic use , Duration of Therapy , Humans , Transcriptome , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy
4.
Cancer Immunol Immunother ; 70(9): 2577-2587, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33576873

ABSTRACT

Gene amplification is considered to be one responsible cause for upregulation of Programmed Death Ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) and to represent a specific molecular subgroup possibly associated with immunotherapy response. Our aim was to analyze the frequency of PD-L1 amplification, its relation to PD-L1 mRNA and protein expression, and to characterize the immune microenvironment of amplified cases. The study was based on two independent NSCLC cohorts, including 354 and 349 cases, respectively. Tissue microarrays were used to evaluate PD-L1 amplification by FISH and PD-L1 protein by immunohistochemistry. Immune infiltrates were characterized immunohistochemically by a panel of immune markers (CD3, CD4, CD8, PD-1, Foxp3, CD20, CD138, CD168, CD45RO, NKp46). Mutational status was determined by targeted sequencing. RNAseq data was available for 197 patients. PD-L1 amplification was detected in 4.5% of all evaluable cases. PD-L1 amplification correlated only weakly with mRNA and protein expression. About  37% of amplified cases were negative for PD-L1 protein. PD-L1 amplification did not show any association with the mutational status. In squamous cell cancer, PD-L1 amplified cases were enriched among patients with high tumoral immune cell infiltration and showed gene expression profiles related to immune exhaustion. In conclusion, PD-L1 amplification correlates with PD-L1 expression in squamous cell cancer and was associated with an immune cell rich tumor phenotype. The correlative findings help to understand the role of PD-L1 amplification as an important immune escape mechanism in NSCLC and suggest the need to further evaluate PD-L1 amplification as predictive biomarker for checkpoint inhibitor therapy.


Subject(s)
B7-H1 Antigen/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Gene Amplification , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Tumor Microenvironment/immunology , B7-H1 Antigen/metabolism , Biomarkers, Tumor , Carcinoma, Squamous Cell/diagnosis , Computational Biology , Gene Expression , Gene Frequency , Humans , Immunohistochemistry , Immunophenotyping , In Situ Hybridization, Fluorescence , Lung Neoplasms/diagnosis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mutation , Phenotype , Tissue Array Analysis
5.
Clin Epigenetics ; 11(1): 157, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31718698

ABSTRACT

Recently, it was shown that the epigenetic age of non-small cell lung cancer (NSCLC) tissues is different from the chronological age of patients. Here, we demonstrate that Regucalcin and Survivin, molecules which are known to be involved in the process of aging and overcoming aging, are epigenetically modified in NSCLC tissues compared to corresponding tumor-free tissues from the same donors by using methylome bead chip and corresponding transcriptome analyses. A high expression of Survivin on the RNA level was negatively correlated with patients' survival in adenocarcinomas while a high Regucalcin expression was correlated positively. In stage 1 adenocarcinomas, this separation is even sharper for both genes. Within these, adenocarcinomas, smokers with low expression of Survivin show a better outcome, while the high expression of Regucalcin seems to be protective in never smokers. On the protein level, these molecules were detected by immunohistochemistry using tissue microarrays. Since Survivin can be secreted and we observed a high abundance of the protein also in the adjacent immune cells of the tumor microenvironment, an effect on benign cells can be assumed. These findings show that epigenetic re-programming of Survivin and Regucalcin in non-small cell lung cancer leads to enhanced expression of Survivin and reduced expression of Regucalcin, with a possible role of both molecules as predictive markers.


Subject(s)
Calcium-Binding Proteins/genetics , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Intracellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/genetics , Smoking/genetics , Survivin/genetics , Aged , Calcium-Binding Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/metabolism , Male , Middle Aged , Smoking/adverse effects , Survival Analysis , Survivin/metabolism , Tumor Microenvironment , Up-Regulation
6.
Front Oncol ; 9: 1550, 2019.
Article in English | MEDLINE | ID: mdl-32039023

ABSTRACT

Although immune checkpoint and targeted therapies offer remarkable benefits for lung cancer treatment, some patients do not qualify for these regimens or do not exhibit consistent benefit. Provided that lung cancer appears to be driven by transforming growth factor beta signaling, we investigated the single drug potency of Pirfenidone, an approved drug for the treatment of lung fibrosis. Five human lung cancer cell lines and one murine line were investigated for transforming growth factor beta inhibition via Pirfenidone by using flow cytometry, In-Cell western analysis, proliferation assays as well as comprehensive analyses of the transcriptome with subsequent bioinformatics analysis. Overall, Pirfenidone induced cell cycle arrest, down-regulated SMAD expression and reduced proliferation in lung cancer. Furthermore, cell stress pathways and pro-apoptotic signaling may be mediated by reduced expression of Survivin. A murine subcutaneous model was used to assess the in vivo drug efficacy of Pirfenidone and showed reduced tumor growth and increased infiltration of T cells and NK cells. This data warrant further clinical evaluation of Pirfenidone with advanced non-small cell lung cancer. The observed in vitro and in vivo effects point to a substantial benefit for using Pirfenidone to reactivate the local immune response and possible application in conjunction with current immunotherapies.

7.
Clin Epigenetics ; 9: 123, 2017.
Article in English | MEDLINE | ID: mdl-29209432

ABSTRACT

Hwang et al. recently showed that VGF substantially contributes to the resistance of human lung cancer cells towards epidermal growth factor receptor kinase inhibitors. This was further linked to enhanced epithelial-mesenchymal transition. Here, we demonstrate that VGF is epigenetically modified in non-small cell lung cancer tissues compared to corresponding tumor-free lung tissues from the same donors by using methylome bead chip analyses. These epigenetic modifications trigger an increased transcription of the VGF gene within the tumors, which then leads to an increased expression of the protein, facilitating epithelial-mesenchymal transition, and the resistance to kinase inhibitors. These results should be taken into account in the design of novel therapeutic and diagnostic approaches.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Nerve Growth Factors/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Nerve Growth Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL