Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mikrochim Acta ; 187(3): 155, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32025820

ABSTRACT

An electrochemiluminescence (ECL) biosensor was fabricated for the evaluation of prostate specific antigen (PSA). The sensor was developed by successively modifying glassy carbon electrode (GCE) electrodes with CdS/Chito/g-C3N4 nanocomposites and DNA1 was labeled at the 5' end with thiol. The aptamer DNA was labeled at the 3' end with a quencher ferrocene (Fc) was ligated to DNA1 by the principle of complementary base pairing. In the absence of PSA, the ECL intensity signal is effectively quenches through the energy transfer and photoexcitation electron transfer between CdS/Chito/g-C3N4 emitter and quencher Fc. After incubation with target PSA, the aptamer DNA interacts with PSA and then moved away from the electrode surface together, which will recover the ECL intensity. Under the optimal conditions, the ECL intensity increases linearly with the logarithm of PSA concentration in the range of 1 pg·mL-1 to 100 ng·mL-1, and the detection limit is 0.14 pg·mL-1 (S/N = 3). The biosensor has been successfully applied to the determination of PSA in serum sample. Graphical abstractSchematic representation of the electrochemiluminescence sensor based on a CdS/chitosan/g-C3N4 nanocomposite, which can be applied to the determination of prostate specific antigen in serum.


Subject(s)
Chitosan/chemistry , Electrochemistry/methods , Immunoassay/methods , Luminescent Measurements/methods , Nanocomposites/chemistry , Prostate-Specific Antigen/blood , Humans
2.
Talanta ; 194: 745-751, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30609601

ABSTRACT

A highly selective DNA-based electrochemiluminescence (ECL) based biosensor is described for the detection of human IgG. It is exploiting the effect of steric hindrance that affects the strength of the ECL signal in the presence of IgG. Digoxin-linked signaling DNA was specifically bound to IgG, and this causes steric hindrance which limits the ability of DNA to hybridize with capturing DNA attached to a gold electrode. Europium (II) doped CdSe quantum dots were covalently linked to the DNA in order to generate the ECL signal. Using this steric hindrance hybridization method, the ECL signal of the biosensor were proportional to the concentration of IgG with a wide linear range and a 14 pM detection limit. Conceivably, the method can be expanded to the detection of a wide range of proteins for which homologous recognition elements are available.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Immunoglobulin G/analysis , Limit of Detection , Luminescent Measurements , Cadmium Compounds/chemistry , Electrochemistry , Electrodes , Europium/chemistry , Gold/chemistry , Humans , Immunoglobulin G/chemistry , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Hybridization , Quantum Dots/chemistry , Selenium Compounds/chemistry
3.
Nanoscale ; 10(43): 20266-20271, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30362484

ABSTRACT

Tungsten diselenide (WSe2) is the material with the lowest thermal conductivity in the world. Most physical methods are used for the synthesis of tungsten diselenide. Here, a simple colloidal method is reported for the synthesis of WSe2 nanosheets. The composition, valence, size, morphology and properties of the samples were characterized and measured. Results showed that the obtained WSe2 nanosheets with a thickness of 0.7 nm had strong blue fluorescence. Significantly, the synthesized WSe2 nanosheets exhibited excellent catalytic activity for the aerobic coupling of amines to imines, with 100% yield under visible light irradiation and air atmosphere. As a photocatalyst, it exhibited excellent recyclability, and maintained a high yield after 5 cycles. It was found that this reaction could also happen in the presence of natural light by slightly extending the reaction time. Moreover, H2O was used as a solvent in the catalytic process, avoiding expensive and toxic organic solvents. This work provides an efficient, economical and sustainable process for the synthesis of imines and shows the great potential of WSe2 nanosheets as photocatalysts for organic synthesis.

4.
Biosens Bioelectron ; 116: 23-29, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29852473

ABSTRACT

A novel enhanced photoelectrochemical DNA sensor, based on a TiO2/Au hybrid electrode structure, was developed to detect target DNA. The sensor was developed by successively modifying fluorine-tin oxide (FTO) electrodes with TiO2 nanoparticles, gold (Au) nanoparticles, hairpin DNA (DNA1), and CdSe-COOH quantum dots (QDs), which acted as signal amplification factors. In the absence of target DNA, the incubated DNA1 hairpin and the CdSe-COOH QDs were in close contact with the TiO2/Au electrode surface, leading to an enhanced photocurrent intensity due to the sensitization effect. After incubation of the modified electrode with the target DNA, the hairpin DNA changed into a double helix structure, and the CdSe QDs moved away from the TiO2/Au electrode surface, leading to a decreased sensitization effect and photoelectrochemical signal intensity. This novel DNA sensor exhibited stable, sensitive and reproducible detection of DNA from 0.1 µM to 10 fM, with a lower detection limit of 3 fM. It provided good specificity, reproducibility, stability and is a promising strategy for the detection of a variety of other DNA targets, for early clinical diagnosis of various diseases.


Subject(s)
Biosensing Techniques/methods , DNA/analysis , Gold/chemistry , Tin Compounds/chemistry , Cadmium Compounds/chemistry , DNA/chemistry , Electrodes , Fluorine/chemistry , Humans , Inverted Repeat Sequences , Limit of Detection , Photochemical Processes , Quantum Dots/chemistry , Reproducibility of Results , Selenium Compounds/chemistry , Titanium/chemistry
5.
Anal Chim Acta ; 1025: 99-107, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-29801612

ABSTRACT

Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C3N4/CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C3N4/CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL-1, ranging from 1 µg mL-1-0.1 pg mL-1. The proposed strategy should provide a promising method for detection of other biomarkers.


Subject(s)
Biosensing Techniques/methods , Cadmium Compounds/chemistry , Nanocomposites/chemistry , Nitriles/chemistry , Sulfides/chemistry , Urokinase-Type Plasminogen Activator/blood , Antibodies, Immobilized/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design , Graphite/chemistry , Humans , Limit of Detection , Urokinase-Type Plasminogen Activator/analysis
6.
Biosens Bioelectron ; 103: 99-103, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29288884

ABSTRACT

An electrochemical biosensor was developed based on a steric hindrance hybridization assay to allow the highly sensitive detection of streptavidin. In the steric hindrance hybridization assay, the signaling strand DNA (sig-DNA) was labeled at the 3' end with CdSe quantum dots (QDs) and at the 5' end with biotin, and capturing strand DNA (the complementary strand of sig-DNA) was labeled at the 5' end with thiol. The steric hindrance effect generated by streptavidin which was bound with the signaling DNA strand. The streptavidin limited the ability of the sig-DNA to hybridize with the cap-DNA, which were linked on the surface of a gold electrode. Therefore, the concentration of streptavidin was detected indirectly based on the concentration of CdSe QDs on the electrode surface. The concentration of CdSe QDs on the electrode surface was detected by differential pulse anodic stripping voltammetry. Under optimal conditions, the streptavidin detection range using the as-prepared biosensor was 1.96pg/mL to 1.96µg/mL and the detection limit was 0.65pg/mL. The experimental results showed that the electrochemical biosensor could detect streptavidin rapidly and accurately.


Subject(s)
Biosensing Techniques/methods , Cadmium Compounds/isolation & purification , DNA/chemistry , Electrochemical Techniques , Selenium Compounds/isolation & purification , Cadmium Compounds/toxicity , Gold/chemistry , Limit of Detection , Nucleic Acid Hybridization/genetics , Quantum Dots/chemistry , Selenium Compounds/toxicity , Streptavidin/chemistry
7.
Nanomaterials (Basel) ; 8(1)2017 Dec 26.
Article in English | MEDLINE | ID: mdl-29278381

ABSTRACT

Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly elements, are excellent materials for numerous energy conversion applications, such as photocatalysis, photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily studied after ligand removal by means of hydrazine and hexane solution. The TE performances of the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated to show a promising TE materialand makes it a possible p-type candidate for medium-temperature TE applications.

8.
Mikrochim Acta ; 185(1): 52, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29594564

ABSTRACT

A film of perovskite-type LaFeO3 nanoparticles (NPs) was deposited on fluorine-doped tin oxide (FTO) conducting glass via dipping-lifting and calcination. Scanning electron microscopy shows that the NPs are evenly distributed on the surface of the glass. The modified glass was further coated with antibody against human interleukin 6 (IL-6) to result in a photoelectrochemical immunosensor for IL-6. The well-established photoelectrochemical immunoassay has a linear current response in the range of 0.1 pg·mL-1 to 0.1 µg·mL-1 and a detection limit as low as 33 fg·mL-1. Graphical abstract Schematic of a novel photoelectochemical immunoassay for the measurement of IL-6 based on perovskite-type LaFeO3 nanoparticles. The immunoassay had a higher sensitivity and may also be applied to other bioanalysis and environment monitoring.


Subject(s)
Immunoassay/methods , Interleukin-6/analysis , Antibodies , Calcium Compounds , Electrochemical Techniques , Fluorine , Humans , Immunoassay/standards , Interleukin-6/immunology , Limit of Detection , Oxides/chemistry , Photochemical Processes , Tin Compounds , Titanium
9.
J Nanosci Nanotechnol ; 16(2): 1645-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433638

ABSTRACT

A novel graphene oxide nanoribbon/poly(diallyldimethylammonium chloride)/gold nanoparticle (GONR/PDDA/AuNP) nanocomposite was synthesized successfully and used for the sensitive detection of dopamine. The GONR/PDDA/AuNP nanocomposite was characterized by transmission and scanning electron microscopy. The electrochemical sensor based on GONR/PDDA/AuNP nanocomposite. was studied by cyclic voltammetry and electrochemical impedance spectroscopy. Experimental parameters such as GONR/PDDA concentration, volume ratio of GONR/PDDA to AuNP, scan rates, and pH were studied to investigate their effect on peak currents. Under optimal conditions, the GONR/PDDA/AuNP-based sensor exhibited excellent electrocatalytic activity for the detection of dopamine with a wide linear range from 9.99 x 10(-8) to 8.69 x 10(-4) M and a low detection limit of 3.33 x 10(-8) M. Moreover, the proposed sensor exhibits high sensitivity, good reproducibility, and stability, and could therefore potentially be applied in other bioanalytical systems.

10.
Nanotechnology ; 27(14): 145701, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26903086

ABSTRACT

P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m(2) g(-1)) than that of Co0.85Se nanofilms (55.17 m(2) g(-1)) and TiO2 nanoparticles (19.49 m(2) g(-1)). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

11.
Biosens Bioelectron ; 77: 13-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26385732

ABSTRACT

The detection and speciation analysis of metal-ion is very important for environmental monitoring. A novel electrochemical biosensor for Nickel(II) detection based on a DNAzyme-CdSe nanocomposite was developed. We firstly hybridized with capture probe (DNA1) and sequentially with DNA (DNA2) on the gold electrode. Then CdSe QDs were incorporated the specific recognition of DNA2 by covalent assembling. Upon addition of nickel ion into the above system, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Ni(2+), resulting in disassociation of the shorter DNA fragments containing CdSe QDs. The remaining CdSe QDs on the electrode surface detected by differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the as-prepared sensor exhibited high sensitivity and fast response to Ni(2+) with the linear range from 20 nM to 0.2mM and a low detection limit of 6.67 nM. The prepared biosensor also shows good stability and good reproducibility and high selectivity toward target Ni(2+) against other metal ions because of highly specific Ni(2+)-dependent DNAzyme. Thus, our strategy has a good potential in the environment surveys.


Subject(s)
Cadmium Compounds/chemistry , Conductometry/instrumentation , DNA, Catalytic/chemistry , Nanocomposites/chemistry , Nickel/analysis , Selenium Compounds/chemistry , Water Pollutants, Chemical/analysis , Biosensing Techniques , Environmental Monitoring/instrumentation , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Nanocomposites/ultrastructure , Nickel/chemistry
12.
Biosens Bioelectron ; 41: 372-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23017684

ABSTRACT

A novel graphene oxide sheets/polyaniline/CdSe quantum dots (GO/PANi/CdSe) nanocomposites were successfully synthesized and used for the sensitive electrochemiluminescence (ECL) biosensing. The GO/PANi/CdSe nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Finally, the nanocomposites were employed to construct the biosensor via layer-by-layer assembly for the ECL detection of Cytochrome C (Cyt C). The whole process was characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). Experimental parameters such as the ratio of GO/PANi, the K(2)S(4)O(8) concentration and the pH value of electrolyte solution were studied to investigate the effect on the ECL intensity. Under the optimized conditions, the ECL intensity decreased linearly with the Cyt C concentrations in the range from 5.0×10(-8) to 1.0×10(-4) M with detection limit of 2.0×10(-8) M. Besides, the as-proposed biosensor exhibits high specificity, good reproducibility, and stability, and may be applied in more bioanalytical systems.


Subject(s)
Biosensing Techniques/instrumentation , Cadmium Compounds/chemistry , Conductometry/instrumentation , Cytochromes c/analysis , Graphite/chemistry , Luminescent Measurements/instrumentation , Nanostructures/chemistry , Selenium Compounds/chemistry , Aniline Compounds/chemistry , Equipment Design , Equipment Failure Analysis , Nanotechnology/instrumentation , Oxides/chemistry , Reproducibility of Results , Sensitivity and Specificity
13.
J Nanosci Nanotechnol ; 12(10): 7980-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23421167

ABSTRACT

Direct electrochemistry of hemoglobin (Hb) was successfully fabricated by immobilizing Hb on the nanocomposites containing of Ag@C nanocables and Au nanoparticles (AuNPs) modified glassy carbon electrode (GCE). The immobilized Hb retained its biological activity and shown high catalytic activities to the reduction of H2O2 by circular dicroism (CD) spectrum, fourier transform infrared (FT-IR) spectrum and cyclic voltammetry (CV). Experimental conditions such as scan rate and pH Value were studied and optimized. The results indicated that the resulting biosensor are linear to the concentrations of H2O2 in the ranges of 6.67 x 10(-7)-2.40 x 10(5) M, and the detection limit is 2.02 x 10(-7) M. The electrochemical biosensor has also high stability and good reproducibility.


Subject(s)
Electrochemistry/methods , Gold/chemistry , Hemoglobins/chemistry , Metal Nanoparticles , Catalysis , Circular Dichroism , Hydrogen Peroxide/chemistry , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
14.
Biosens Bioelectron ; 31(1): 544-7, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22024593

ABSTRACT

A novel enzymatic hydrogen peroxide sensor was successfully fabricated based on the nanocomposites containing of Ag/C nanocables and gold nanoparticles (AuNPs). Ag/C nanocables have been synthesized by a hydrothermal method and then AuNPs were assembled on the surface of Ag/C nanocables. The nanocomposites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The above nanocomposites have satisfactory chemical stability and excellent biocompatibility. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Ag/C/Au nanocomposites at glassy carbon electrode (GCE). The results indicated that the Ag/C/Au nanocomposites exhibited excellent electrocatalytic activity to the reduction of H(2)O(2). It offered a linear range of 6.7×10(-9) to 8.0×10(-6) M, with a detection limit of 2.2×10(-9) M. The apparent Michaelis-Menten constant of the biosensor was 51.7×10(-6) M. These results indicated that Ag/C/Au nanocomposites have potential for constructing of a variety of electrochemical biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Carbon/chemistry , Conductometry/instrumentation , Gold/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/analysis , Nanostructures/chemistry , Nanotechnology/instrumentation , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Hydrogen Peroxide/chemistry , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...