Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(6)2022 05 24.
Article in English | MEDLINE | ID: mdl-35746593

ABSTRACT

Japanese encephalitis virus (JEV) is an important zoonotic pathogen, which causes central nervous system symptoms in humans and reproductive disorders in swine. It has led to severe impacts on human health and the swine industry; however, there is no medicine available for treating yet. Therefore, vaccination is the best preventive measure for this disease. In the study, a modified mRNA vaccine expressing the prM and E proteins of the JEV P3 strain was manufactured, and a mouse model was used to assess its efficacy. The mRNA encoding prM and E proteins showed a high level of protein expression in vitro and were encapsulated into a lipid nanoparticle (LNP). Effective neutralizing antibodies and CD8+ T-lymphocytes-mediated immune responses were observed in vaccinated mice. Furthermore, the modified mRNA can protect mice from a lethal challenge with JEV and reduce neuroinflammation caused by JEV. This study provides a new option for the JE vaccine and lays a foundation for the subsequent development of a more efficient and safer JEV mRNA vaccine.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Japanese Encephalitis Vaccines , Animals , Antibodies, Viral , Encephalitis Virus, Japanese/genetics , Immunity , Japanese Encephalitis Vaccines/genetics , Liposomes , Mice , Nanoparticles , RNA, Messenger/genetics , Swine , Vaccines, Synthetic , mRNA Vaccines
2.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35215773

ABSTRACT

The African swine fever virus (ASFV) is a dsDNA virus that can cause serious, highly infectious, and fatal diseases in wild boars and domestic pigs. The ASFV has brought enormous economic loss to many countries, and no effective vaccine or treatment for the ASFV is currently available. Therefore, the on-site rapid and accurate detection of the ASFV is key to the timely implementation of control. The RNA-guided, RNA-targeting CRISPR effector CRISPR-associated 13 (Cas13a; previously known as C2c2) exhibits a "collateral effect" of promiscuous RNase activity upon the target recognition. The collateral cleavage activity of LwCas13a is activated to degrade the non-targeted RNA, when the crRNA of LwCas13a binds to the target RNA. In this study, we developed a rapid and sensitive ASFV detection method based on the collateral cleavage activity of LwCas13a, which combines recombinase-aided amplification (RAA) and a lateral flow strip (named CRISPR/Cas13a-LFD). The method was an isothermal detection at 37 °C, and the detection can be used for visual readout. The detection limit of the CRISPR/Cas13a-LFD was 101 copies/µL of p72 gene per reaction, and the detection process can be completed within an hour. The assay showed no cross-reactivity to eight other swine viruses, including classical swine fever virus (CSFV), and has a 100% coincidence rate with real-time PCR detection of the ASFV in 83 clinical samples. Overall, this method is sensitive, specific, and practicable onsite for the ASFV detection, showing a great application potential for monitoring the ASFV in the field.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , CRISPR-Cas Systems , African Swine Fever/virology , African Swine Fever Virus/genetics , Animals , Genotype , Reagent Strips , Recombinases/genetics , Recombinases/metabolism , Sensitivity and Specificity , Sus scrofa , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...