Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Cell Commun Signal ; 22(1): 272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750472

ABSTRACT

BACKGROUND: In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS: Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS: Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1ß, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS: Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.


Subject(s)
Glioma , Janus Kinase 2 , Membrane Glycoproteins , Microglia , NF-kappa B , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Gene Knockdown Techniques , Cell Proliferation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Apoptosis/genetics , Disease Progression , Cell Movement/genetics
2.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38702768

ABSTRACT

MOTIVATION: DNA methylation-based predictors of various biological metrics have been widely published and are becoming valuable tools in epidemiologic studies of epigenetics and personalized medicine. However, generating these predictors from original source software and web servers is complex and time consuming. Furthermore, different predictors were often derived based on data from different types of arrays, where array differences and batch effects can make predictors difficult to compare across studies. RESULTS: We integrate these published methods into a single R function to produce 158 previously published predictors for chronological age, biological age, exposures, lifestyle traits and serum protein levels using both classical and principal component-based methods. To mitigate batch and array differences, we also provide a modified RCP method (ref-RCP) that normalize input DNA methylation data to reference data prior to estimation. Evaluations in real datasets show that this approach improves estimate precision and comparability across studies. AVAILABILITY AND IMPLEMENTATION: The function was included in software package ENmix, and is freely available from Bioconductor website (https://www.bioconductor.org/packages/release/bioc/html/ENmix.html).


Subject(s)
DNA Methylation , Software , Humans , Epigenesis, Genetic , Epigenomics/methods
3.
Adv Mater ; : e2403202, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38751336

ABSTRACT

Conductive metal-organic frameworks (c-MOFs) and ionic liquids (ILs) have emerged as auspicious combinations for high-performance supercapacitors. However, the nanoconfinement from c-MOFs and high viscosity of ILs slow down the charging process. This hindrance can, however, be resolved by adding solvent. Here, constant-potential molecular simulations are performed to scrutinize the solvent impact on charge storage and charging dynamics of MOF-IL-based supercapacitors. Conditions for >100% enhancement in capacity and ≈6 times increase in charging speed are found. These improvements are confirmed by synthesizing near-ideal c-MOFs and developing multiscale models linking molecular simulations to electrochemical measurements. Fundamentally, the findings elucidate that the solvent acts as an "ionophobic agent" to induce a substantial enhancement in charge storage, and as an "ion traffic police" to eliminate convoluted counterion and co-ion motion paths and create two distinct ion transport highways to accelerate charging dynamics. This work paves the way for the optimal design of MOF supercapacitors.

4.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578989

ABSTRACT

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Subject(s)
BCG Vaccine , Tuberculosis , Humans , Linoleic Acid , Trained Immunity , Multiomics , Adjuvants, Immunologic/pharmacology
5.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473752

ABSTRACT

Gliomas represent the most common and lethal category of primary brain tumors. Bisphenol A (BPA), a widely recognized endocrine disruptor, has been implicated in the progression of cancer. Despite its established links to various cancers, the association between BPA and glioma progression remains to be clearly defined. This study aimed to shed light on the impact of BPA on glioma cell proliferation and overall tumor progression. Our results demonstrate that BPA significantly accelerates glioma cell proliferation in a time- and dose-dependent manner. Furthermore, BPA has been found to enhance the invasive and migratory capabilities of glioma cells, potentially promoting epithelial-mesenchymal transition (EMT) characteristics within these tumors. Employing bioinformatics approaches, we devised a risk assessment model to gauge the potential glioma hazards associated with BPA exposure. Our comprehensive analysis revealed that BPA not only facilitates glioma invasion and migration but also inhibits apoptotic processes. In summary, our study offers valuable insights into the mechanisms by which BPA may promote tumorigenesis in gliomas, contributing to the understanding of its broader implications in oncology.


Subject(s)
Glioma , Humans , Cell Line, Tumor , Benzhydryl Compounds/pharmacology , Phenols/pharmacology
6.
Article in English | MEDLINE | ID: mdl-38442245

ABSTRACT

BACKGROUND: The endemic coronaviruses OC43, HKU1, NL63 and 229E cause cold-like symptoms and are related to SARS-CoV-2, but their natural histories are poorly understood. In a cohort of children followed from birth to 4 years, we documented all coronavirus infections, including SARS-CoV-2, to understand protection against subsequent infections with the same virus (homotypic immunity) or a different coronavirus (heterotypic immunity). METHODS: Mother-child pairs were enrolled in metropolitan Cincinnati during the third trimester of pregnancy in 2017-18. Mothers reported their child's socio-demographics, risk factors, and weekly symptoms. Mid-turbinate nasal swabs were collected weekly. Blood was collected at 6 weeks, 6, 12, 18, 24 months and annually thereafter. Infections were detected by testing nasal swabs by an RT-PCR multi-pathogen panel and by serum IgG responses. Health care visits were documented from pediatric records. Analysis was limited to 116 children with high sample adherence. Re-consent for monitoring SARS-CoV-2 infections from June 2020 through November 2021 was obtained for 74 (64%) children. RESULTS: We detected 345 endemic coronavirus infections (1.1 infections/child-year) and 21 SARS-CoV-2 infections (0.3 infections/child-year). Endemic coronavirus and SARS-CoV-2 infections were asymptomatic or mild. Significant protective homotypic immunity occurred after a single infection with OC43 (77%) and HKU1 (84%), and after two infections with NL63 (73%). No heterotypic protection against endemic coronaviruses or SARS-CoV-2 was identified. CONCLUSIONS: Natural coronavirus infections were common and resulted in strong homotypic immunity but not heterotypic immunity against other coronaviruses, including SARS-CoV-2. Endemic coronavirus and SARS-CoV-2 infections in this US cohort were typically asymptomatic or mild.

7.
Clin Neurol Neurosurg ; 240: 108250, 2024 May.
Article in English | MEDLINE | ID: mdl-38552364

ABSTRACT

Hypoxia is a prevalent characteristic of numerous neurological disorders including stroke, Alzheimer's disease, and Parkinson's disease. Extracellular vesicles (EVs) are minute particles released by cells that contain diverse biological materials, including proteins, lipids, and nucleic acids. They have been implicated in a range of physiological and pathological processes including intercellular communication, immune responses, and disease progression. EVs are believed to play a pivotal role in modulating the microenvironment of hypoxia-associated neurological diseases. These EVs are capable of transporting hypoxia-inducible factors such as proteins and microRNAs to neighboring or remote cells, thereby influencing their behavior. Furthermore, EVs can traverse the blood-brain barrier, shielding the brain from detrimental substances in the bloodstream. This enables them to deliver their payload directly to the brain cells, potentially intensifying the effects of hypoxia. Nonetheless, the capacity of EVs to breach the blood-brain barrier presents new opportunities for drug delivery. The objective of this study was to elucidate the role of EVs as mediators of information exchange during tissue hypoxia, a pathophysiological process in ischemic stroke and malignant gliomas. We also investigated their involvement in the progression and regression of major diseases of the central nervous system, which are pertinent to the development of therapeutic interventions for neurological disorders.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Hypoxia/metabolism , Blood-Brain Barrier/metabolism , Animals
8.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491323

ABSTRACT

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Subject(s)
Poaceae , Tetraploidy , Poaceae/genetics , Polyploidy , Genomics , Transcriptome/genetics , Genome, Plant/genetics , Evolution, Molecular
10.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328164

ABSTRACT

Cognitive deficit is a debilitating complication of SCD with multifactorial pathobiology. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition (NOR) and fear conditioning (FC) tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that neuroinflammation and lipid dysregulation are potential underlying mechanisms of social stress-related cognitive deficit in SS mice.

11.
Int J Ophthalmol ; 17(1): 42-52, 2024.
Article in English | MEDLINE | ID: mdl-38239961

ABSTRACT

AIM: To compare the three-dimensional choroidal vascularity index (CVI) and choroidal thickness between fellow eyes of acute primary angle-closure (F-APAC) and chronic primary angle-closure glaucoma (F-CPACG) and the eyes of normal controls. METHODS: This study included 37 patients with unilateral APAC, 37 with asymmetric CPACG without prior treatment, and 36 healthy participants. Using swept-source optical coherence tomography (SS-OCT), the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally. Pearson's correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors. RESULTS: The mean subfoveal CVIs were 0.35±0.10, 0.33±0.09, and 0.29±0.04, and the mean subfoveal choroidal thickness were 315.62±52.92, 306.22±59.29, and 262.69±45.55 µm in the F-APAC, F-CPACG, and normal groups, respectively. All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes (P<0.05), while there were no significant differences between the F-APAC and F-CPACG eyes. In the peripapillary region, the mean overall CVIs were 0.21±0.08, 0.20±0.08, and 0.19±0.05, and the mean overall choroidal thickness were 180.45±54.18, 174.82±50.67, and 176.18±37.94 µm in the F-APAC, F-CPACG, and normal groups, respectively. There were no significant differences between any of the two groups in all peripapillary sectors. Younger age, shorter axial length, and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness (P<0.05). CONCLUSION: The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls. Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG. A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.

12.
Tohoku J Exp Med ; 262(2): 133-141, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-37914283

ABSTRACT

Cell division cycle 42 (CDC42) mediates immune escape in cancers. This study aimed to investigate linkages of CDC42 with tumor features, treatment response, and survival in advanced melanoma patients receiving programmed death-1 (PD-1) inhibitors. Pre-treatment and post-treatment (after 2 cycles) serum CDC42 of 35 advanced melanoma patients receiving PD-1 inhibitor was assessed by enzyme-linked immunosorbent assay. Patients with tumor-node-metastasis (TNM) stage IV (vs. III) (P = 0.050) and abnormal (vs. normal) lactate dehydrogenase (LDH) (P = 0.022) had higher pre-treatment CDC42. After 2-cycle therapy, CDC42 was declined (P < 0.001). Objective response and disease control rates were 34.3% and 62.9%, respectively. Additionally, pre-treatment and post-treatment CDC42 was reduced in patients with objective response and disease control than those without (all P < 0.050). Concerning survival, pre-treatment with CDC42 > 700 pg/mL was associated with shorter progression-free survival (PFS) (P = 0.013), but not overall survival (OS) (P = 0.060). Specifically, the 12-month PFS rate was 26.7% and 66.2%, and the 12-month OS rate was 61.1% and 82.5% in patients with pre-treatment with CDC42 > 700 pg/mL and ≤ 700 pg/mL, respectively. Post-treatment with CDC42 > 700 pg/mL was correlated with shortened PFS (P = 0.010) and OS (P = 0.006). The 12-month PFS rate was 12.5% and 62.0%, and the 12-month OS rate was 42.3% and 88.0% in patients with post-treatment with CDC42 > 700 pg/mL and ≤ 700 pg/mL, accordingly. Furthermore, post-treatment with CDC42 > 700 pg/mL was independently related to PFS [hazard ratio (HR): 2.704, P = 0.029 and OS (HR: 7.749, P = 0.005)]. Elevated CDC42 correlates with advanced TNM, abnormal LDH, worse clinical response, and dismal survival in advanced melanoma patients receiving PD-1 inhibitors.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Melanoma/pathology , Progression-Free Survival , Proportional Hazards Models , Cell Cycle
14.
Mol Carcinog ; 62(11): 1731-1744, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37589446

ABSTRACT

The cell cycle, a pivotal regulator of cell proliferation, can be significantly influenced by the phosphatase and tensin homolog (PTEN)/AKT signaling pathway's modulation of cyclin-related proteins. In our study, we discovered the crucial role of EEF1E1 in this process, as it appears to downregulate PTEN expression. Furthermore, our findings affirmed that EEF1E1 modulates downstream cell cycle-related proteins by suppressing the PTEN/AKT pathway. Cell cycle assay results revealed that EEF1E1 downregulation stunted the advancement of glioma cells in both the G1 and S phases. A suite of assays-Cell Counting Kit-8, colony formation, and ethyl-2'-deoxyuridine-substantiated that the EEF1E1 downregulation markedly curtailed glioma proliferation. We further validated this phenomenon through animal studies and coculture experiments on brain slices. Our comprehensive investigation indicates that EEF1E1 knockdown can effectively inhibit the glioma cell proliferation by regulating the cell cycle via the PTEN/AKT signaling pathway. Consequently, EEF1E1 emerges as a potential therapeutic target for glioma treatment, signifying critical clinical implications.

15.
Front Cell Infect Microbiol ; 13: 1134119, 2023.
Article in English | MEDLINE | ID: mdl-37091679

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are protective against tuberculous and non-tuberculous mycobacterial infections with poorly understood mechanisms. Despite an innate-like nature, MAIT cell responses remain heterogeneous in bacterial infections. To comprehensively characterize MAIT activation programs responding to different bacteria, we stimulated MAIT cells with E. coli to compare with Bacillus Calmette-Guérin (BCG), which remains the only licensed vaccine and a feasible tool for investigating anti-mycobacterial immunity in humans. Upon sequencing mRNA from the activated and inactivated CD8+ MAIT cells, results demonstrated the altered MAIT cell gene profiles by each bacterium with upregulated expression of activation markers, transcription factors, cytokines, and cytolytic mediators crucial in anti-mycobacterial responses. Compared with E. coli, BCG altered more MAIT cell genes to enhance cell survival and cytolysis. Flow cytometry analyses similarly displayed a more upregulated protein expression of B-cell lymphoma 2 and T-box transcription factor Eomesodermin in BCG compared to E.coli stimulations. Thus, the transcriptomic program and protein expression of MAIT cells together displayed enhanced pro-survival and cytotoxic programs in response to BCG stimulation, supporting BCG induces cell-mediated effector responses of MAIT cells to fight mycobacterial infections.


Subject(s)
Antineoplastic Agents , Mucosal-Associated Invariant T Cells , Mycobacterium bovis , Tuberculosis , Humans , Mucosal-Associated Invariant T Cells/microbiology , BCG Vaccine , Transcriptome , Escherichia coli/genetics
16.
Mol Biol Rep ; 50(1): 361-376, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334232

ABSTRACT

BACKGROUND: Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS: In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS: Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.


Subject(s)
Prunus persica , Prunus persica/genetics , Prunus persica/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Fruit/metabolism , Leucine Zippers , Ethylenes/metabolism , Cold Temperature , Gene Expression Regulation, Plant/genetics
17.
Biotechnol Appl Biochem ; 70(3): 1109-1120, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36480009

ABSTRACT

To verify the inhibitory mechanism of ß-catenin-designed peptides in colorectal cancer(CRC) tumors, the following experiments were performed. In vitro colony formation, Transwell assays, and flow cytometry were performed to assess the biological effects of designed peptides (F18KD, F20A4-7k, F20A4-10k, and F20A3-9k + F20A4-10k + F20A5-9k) in HT-29 cells. In vivo xenograft experiments were performed and treated with peptides. Next, tumors were subjected to Hematoxylin and eosin staining (HE), immunohistochemical, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays to evaluate the inhibitory effect of peptides on tumors. ß-Catenin levels were quantified via western blotting (WB) and quantitative real-time polymerase chain reaction, and ß-catenin was located using confocal laser scanning microscopy. T-cell factor-4 (TCF-4), C-myc, and CCND1 levels were quantified via WB. Results were obtained as following. First, the peptides reduced viability, migration, and invasion; promoted apoptosis; and stabilized the S phase of HT-29 cells. Second, peptides suppressed tumor growth and downregulated the expression of CD34, vascular endothelial growth factor, and ß-catenin in tumors. Furthermore, we found that peptides downregulated ß-catenin expression in both the cytoplasm and nucleus; TCF-4, C-myc, and CCND1 expression was also downregulated. Notably, ß-catenin-targeting peptides had a better inhibitory effect on CRC than non-ß-catenin-target peptides, and a combination of peptides exerted a more potent inhibitory effect on CRC than single peptides. It suggested that ß-Catenin-targeting peptides promote apoptosis in CRC tumors by inhibiting activation of the Wnt/ß-catenin pathway.


Subject(s)
Colorectal Neoplasms , Vascular Endothelial Growth Factor A , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Wnt Signaling Pathway , Apoptosis , Peptides/pharmacology , Peptides/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic
18.
Epigenomics ; 14(21): 1343-1354, 2022 11.
Article in English | MEDLINE | ID: mdl-36453021

ABSTRACT

Background: The objective was to identify stable and dynamic DNA methylation loci associated with cardiometabolic traits among an adult population from the Croatian island of Hvar. Materials & methods: An epigenome-wide association study was conducted using peripheral blood longitudinally collected at two time points 10 years apart via Infinium MethylationEPIC beadarray (n = 112). Stable and dynamic loci were identified using linear mixed models. Associations between cardiometabolic traits and loci were assessed using linear models. Results: 22 CpG loci were significantly associated with systolic blood pressure. Twenty were stable and two were dynamic. Conclusion: Multiple genes may be involved in the determination of systolic blood pressure level via stable epigenetic programming, potentially established earlier in life.


Cardiovascular disease is the leading cause of death worldwide. Previous studies have found that genetics incompletely explain susceptibility to cardiovascular disease. To find new potential risk factors, the authors investigated the possible contribution of DNA methylation (modifications to DNA that can affect gene expression but do not alter the underlying genetic code) in an adult population on the Croatian island of Hvar, which has a high number of people with cardiovascular and metabolic disease. By examining DNA methylation in blood collected at two time points, 10 years apart, the authors were able to identify DNA methylation that either stayed the same over time (stable) or changed the most over time (dynamic). These were then compared with clinical test results related to cardiovascular or metabolic diseases to determine if they are associated. Twenty-two methylation sites were found to be associated with systolic blood pressure. Of those, 20 were considered stable and two were dynamic. Additionally, there was one stable methylation site associated with serum calcium and one with C-reactive protein. These findings suggest that systolic blood pressure may be regulated through stable DNA methylation that is potentially established earlier in life.


Subject(s)
Cardiovascular Diseases , Epigenesis, Genetic , Adult , Humans , Blood Pressure/genetics , Croatia , Genome-Wide Association Study , DNA Methylation , CpG Islands , Cardiovascular Diseases/genetics
19.
Pediatr Obes ; 17(12): e12964, 2022 12.
Article in English | MEDLINE | ID: mdl-36350200

ABSTRACT

BACKGROUND: Neighbourhood socio-economic environment (SEE) is associated with obesity in older children and adults, but little is known about this relationship in younger children. Breastfeeding is an important preventative of adiposity in childhood, but its relationship with neighbourhood SEE is unknown. AIMS: We assessed differences in adiposity and obesity in children before age two by neighbourhood SEE, controlling for family socio-demographics and breastfeeding duration. MATERIALS AND METHODS: Family socio-demographics, child body mass index z scores (BMIz), and breastfeeding duration were collected at periodic study visits from participants in PREVAIL (n = 245), a birth cohort in Cincinnati, OH. Addresses were assigned a Deprivation Index score, a validated measure of SEE, and dichotomized into highest SEE (least deprived quartile of scores) and not highest SEE (remaining quartiles). Longitudinal and Poisson models assessed differences in BMIz by SEE over the second year of life and obesity risk at age two, respectively (highest SEE, reference), while attenuation of obesity risk by breastfeeding duration was tested in mediation models. RESULTS: Residing outside of the highest SEE neighbourhoods was associated with an increased BMIz of 0.04 (95%CI 0.02, 0.06) per month of life and increased obesity risk at age two (aRR: 3.7, 95%CI 1.2, 16.2), controlling for family socio-demographics. Breastfeeding duration attenuated >9% of the obesity risk attributable to SEE (mediated RR: 3.4, 95%CI 1.1, 14.8). DISCUSSION: In the PREVAIL Cohort, residing outside of the highest SEE neighbourhoods predicted a significant increase in BMIz and obesity risk in children before age two, a relationship that was partially mediated by breastfeeding duration. CONCLUSION: Breastfeeding support may play an important role in reducing obesity rates in children in lower SEE neighbourhoods.


Subject(s)
Adiposity , Pediatric Obesity , Child , Adult , Female , Humans , Pediatric Obesity/epidemiology , Pediatric Obesity/prevention & control , Socioeconomic Factors , Residence Characteristics , Body Mass Index
20.
BMC Plant Biol ; 22(1): 459, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153492

ABSTRACT

BACKGROUND: Fruit tree yield and fruit quality are affected by the tree's growth type, and branching angle is an important agronomic trait of fruit trees, which largely determines the crown structure. The weeping type of peach tree shows good ventilation and light transmission; therefore, it is commonly cultivated. However, there is no molecular marker closely linked with peach weeping traits for target gene screening and assisted breeding. RESULTS: First, we confirmed that the peach weeping trait is a recessive trait controlled by a single gene by constructing segregating populations. Based on BSA-seq, we mapped the gene controlling this trait within 159 kb of physical distance on chromosome 3. We found a 35 bp deletion in the candidate area in standard type, which was not lacking in weeping type. For histological assessments, different types of branches were sliced and examined, showing fiber bundles in the secondary xylem of ordinary branches but not in weeping branches. CONCLUSIONS: This study established a molecular marker that is firmly linked to weeping trait. This marker can be used for the selection of parents in the breeding process and the early screening of hybrid offspring to shorten the breeding cycle. Moreover, we preliminary explored histological differences between growth types. These results lay the groundwork for a better understanding of the weeping growth habit of peach trees.


Subject(s)
Prunus persica , Fruit/genetics , Phenotype , Plant Breeding , Prunus persica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...