Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(2): 1271-1289, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38315869

ABSTRACT

Adipose tissue macrophages (ATMs) are crucial in maintaining a low-grade inflammatory microenvironment in adipose tissues (ATs). Modulating ATM polarization to attenuate inflammation represents a potential strategy for treating obesity with insulin resistance. This study develops a combination therapy of celastrol (CLT) and phenformin (PHE) using chondroitin sulfate-derived micelles. Specifically, CLT-loaded 4-aminophenylboronic acid pinacol ester-modified chondroitin sulfate micelle (CS-PBE/CLT) and chondroitin sulfate-phenformin conjugate micelles (CS-PHE) were synthesized, which were shown to actively target ATs through CD44-mediated pathways. Furthermore, the dual micellar systems significantly reduced inflammation and lipid accumulation via protein quantification and Oil Red O staining. In preliminary in vivo studies, we performed H&E staining, immunohistochemical staining, insulin tolerance test, and glucose tolerance test, and the results showed that the combination therapy using CS-PBE/CLT and CS-PHE micelles significantly reduced the average body weight, white adipose tissue mass, and liver mass of high-fat diet-fed mice while improving their systemic glucose homeostasis. Overall, this combination therapy presents a promising alternative to current treatment options for diet-induced obesity.


Subject(s)
Chondroitin Sulfates , Micelles , Pentacyclic Triterpenes , Animals , Mice , Phenformin/metabolism , Adipose Tissue/metabolism , Obesity/drug therapy , Obesity/metabolism , Inflammation , Diet, High-Fat/adverse effects
2.
Int J Mol Sci ; 24(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38069387

ABSTRACT

Serotonin (5-HT), an indoleamine compound, has been known to mediate many physiological responses of plants under environmental stress. The deep-seeding (≥20 cm) of maize seeds is an important cultivation strategy to ensure seedling emergence and survival under drought stress. However, the role of 5-HT in maize deep-seeding tolerance remains unexplored. Understanding the mechanisms and evaluating the optimal concentration of 5-HT in alleviating deep-seeding stress could benefit maize production. In this study, two maize inbred lines were treated with or without 5-HT at both sowing depths of 20 cm and 3 cm, respectively. The effects of different concentrations of 5-HT on the growth phenotypes, physiological metabolism, and gene expression of two maize inbred lines were examined at the sowing depths of 20 cm and 3 cm. Compared to the normal seedling depth of 3 cm, the elongation of the mesocotyl (average elongation 3.70 cm) and coleoptile (average elongation 0.58 cm), secretion of indole-3-acetic acid (IAA; average increased 3.73 and 0.63 ng g-1 FW), and hydrogen peroxide (H2O2; average increased 1.95 and 0.63 µM g-1 FW) in the mesocotyl and coleoptile were increased under 20 cm stress, with a concomitant decrease in lignin synthesis (average decreased 0.48 and 0.53 A280 g-1). Under 20 cm deep-seeding stress, the addition of 5-HT activated the expression of multiple genes of IAA biosynthesis and signal transduction, including Zm00001d049601, Zm00001d039346, Zm00001d026530, and Zm00001d049659, and it also stimulated IAA production in both the mesocotyl and coleoptile of maize seedlings. On the contrary, 5-HT suppressed the expression of genes for lignin biosynthesis (Zm00001d016471, Zm00001d005998, Zm00001d032152, and Zm00001d053554) and retarded the accumulation of H2O2 and lignin, resulting in the elongation of the mesocotyl and coleoptile of maize seedlings. A comprehensive evaluation analysis showed that the optimum concentration of 5-HT in relieving deep-seeding stress was 2.5 mg/L for both inbred lines, and 5-HT therefore could improve the seedling emergence rate and alleviate deep-seeding stress in maize seedlings. These findings could provide a novel strategy for improving maize deep-seeding tolerance, thus enhancing yield potential under drought and water stress.


Subject(s)
Cotyledon , Seedlings , Seedlings/metabolism , Cotyledon/metabolism , Zea mays/metabolism , Serotonin/metabolism , Lignin/metabolism , Hydrogen Peroxide/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism
3.
Front Plant Sci ; 14: 1152399, 2023.
Article in English | MEDLINE | ID: mdl-37008499

ABSTRACT

The plastic elongation of mesocotyl (MES) and coleoptile (COL), which can be repressed by light exposure, plays a vital role in maize seedling emergence and establishment under adverse environmental conditions. Understanding the molecular mechanisms of light-mediated repression of MES and COL elongation in maize will allow us to develop new strategies for genetic improvement of these two crucial traits in maize. A maize variety, Zheng58, was used to monitor the transcriptome and physiological changes in MES and COL in response to darkness, as well as red, blue, and white light. The elongation of MES and COL was significantly inhibited by light spectral quality in this order: blue light > red light > white light. Physiological analyses revealed that light-mediated inhibition of maize MES and COL elongation was closely related to the dynamics of phytohormones accumulation and lignin deposition in these tissues. In response to light exposure, the levels of indole-3-acetic acid, trans-zeatin, gibberellin 3, and abscisic acid levels significantly decreased in MES and COL; by contrast, the levels of jasmonic acid, salicylic acid, lignin, phenylalanine ammonia-lyase, and peroxidase enzyme activity significantly increased. Transcriptome analysis revealed multiple differentially expressed genes (DEGs) involved in circadian rhythm, phytohormone biosynthesis and signal transduction, cytoskeleton and cell wall organization, lignin biosynthesis, and starch and sucrose metabolism. These DEGs exhibited synergistic and antagonistic interactions, forming a complex network that regulated the light-mediated inhibition of MES and COL elongation. Additionally, gene co-expression network analysis revealed that 49 hub genes in one and 19 hub genes in two modules were significantly associated with the elongation plasticity of COL and MES, respectively. These findings enhance our knowledge of the light-regulated elongation mechanisms of MES and COL, and provide a theoretical foundation for developing elite maize varieties with improved abiotic stress resistance.

4.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047743

ABSTRACT

Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such as drought and low temperature during seed germination. Using 346 F2:3 maize population families from W64A × K12 cross at three sowing depths, we identified 33 quantitative trait loci (QTLs) for the emergence rate, mesocotyl, coleoptile, and seedling lengths via composite interval mapping (CIM). These loci explained 2.89% to 14.17% of phenotypic variation in a single environment, while 12 of 13 major QTLs were identified at two or more sowing environments. Among those, four major QTLs in Bin 1.09, Bin 4.08, Bin 6.01, and Bin 7.02 supported pleiotropy for multiple deep-sowing tolerant traits. Meta-analysis identified 17 meta-QTLs (MQTLs) based on 130 original QTLs from present and previous studies. RNA-Sequencing of mesocotyl and coleoptile in both parents (W64A and K12) at 3 cm and 20 cm sowing environments identified 50 candidate genes expressed differentially in all major QTLs and MQTLs regions: six involved in the circadian clock, 27 associated with phytohormones biosynthesis and signal transduction, seven controlled lignin biosynthesis, five regulated cell wall organization formation and stabilization, three were responsible for sucrose and starch metabolism, and two in the antioxidant enzyme system. These genes with highly interconnected networks may form a complex molecular mechanism of maize deep-sowing tolerance. Findings of this study will facilitate the construction of molecular modules for deep-sowing tolerance in maize. The major QTLs and MQTLs identified could be used in marker-assisted breeding to develop elite maize varieties.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/genetics , Chromosome Mapping , Quantitative Trait Loci/genetics , Phenotype , Seedlings/genetics , RNA
5.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768464

ABSTRACT

Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30-20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00-2.01, Bin 2.03-2.04, Bin 4.00-4.03, Bin 5.03, Bin 5.05-5.07, Bin 8.01-8.03, Bin 8.04-8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74-528.88 µg g-1 FW) and 15 moderate (DIMBOA content was 312.92-426.56 µg g-1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties.


Subject(s)
Plant Breeding , Zea mays , Animals , Zea mays/genetics , Insecta/genetics , Genetic Variation , Genetic Association Studies
6.
Article in English | MEDLINE | ID: mdl-36753285

ABSTRACT

In situ-forming hydrogels are highly effective in covering complex and irregular tissue defects. Herein, a biomimetic gel implant (CS-GEL) consisting of methacrylated chondroitin sulfate and gelatin is obtained via visible light irradiation, which displays rapid gelation (∼30 s), suitable mechanical properties, and biological features to support osteoblast attachment and proliferation. Sclerostin is proven to be a viable target to promote osteogenesis. Hence, baicalin, a natural flavonoid with a high affinity to sclerostin, is selected as the therapeutic compound to achieve localized neutralization of sclerostin. To overcome its poor solubility and permeability, a baicalin nanocomplex (BNP) is synthesized using Solutol HS15, which is then dispersed in the CS-GEL to afford a nanocomposite delivery system, i.e., BNP-loaded gel (BNP@CS-GEL). In vitro, BNP significantly downregulated the level of sclerostin in MLO-Y4 osteocytes. In vivo, either CS-GEL or BNP@CS-GEL is proven to effectively promote osteogenesis and angiogenesis in a calvarial critical-sized bone defect rat model, with BNP@CS-GEL showing the best pro-healing effect. Specifically, the BNP@CS-GEL-treated group significantly downregulated the sclerostin level as compared to the sham group (p < 0.05). RANKL expression was also significantly suppressed by BNP in MLO-Y4 cells and BNP@CS-GEL in vivo. Collectively, our study offers a facile and viable gel platform in combination with nanoparticulated baicalin for the localized neutralization of sclerostin to promote bone regeneration and repair.

7.
Front Microbiol ; 14: 1256269, 2023.
Article in English | MEDLINE | ID: mdl-38274741

ABSTRACT

The intricate decomposition pathways within soil micro-food webs are vital for cycling soil organic carbon and nutrients, influencing the quality, productivity, and sustainability of soil systems. However, the impact of diverse phosphorus addition on these organic decomposition pathways still needs to be explored. In an 8-year experiment, phosphorus (P) fertilizer was added at varying levels (0 kg ha-1, CK; 60 kg ha-1, P60; 120 kg ha-1, P120; and 180 kg ha-1, P180), to investigate the response of the soil micro-food web. The results revealed a significant effect of phosphorus addition on soil microorganisms and nematodes, with P60 exerting a greater influence than other treatments. At P60, the Shannon index of nematodes and fungi surpassed other treatments, indicating higher diversity, while the Shannon index of bacteria was lower. The Chao1 index of bacteria and fungi at P60 was higher, contrasting with the lower index for nematodes. Metabolic footprints of bacterivores and omnivores-predators (BFMF and OPMF) were higher at P60, while metabolic footprints of fungivores and plant parasites (FFMF and PPMF) were lower, signifying altered energy flow. Functional metabolic footprints and energy flow analysis unveiled a stable soil micro-food web structure at P60, with enhanced energy conversion efficiency. Network analysis illustrated positive correlations between fungi, fungivorous nematodes (FF), and omnivorous-predatory nematodes (OP) at P60, while P120 and P180 showed positive correlations among bacteria, bacterivorous nematodes (BF), and OP. Path analysis underscored the higher contribution rate of BF-C, FF-C, and OP-C to soil organic carbon at P60 compared with P120 and P180. These findings suggest that nutrient interactions between fungi and nematodes regulate soil micro-food web decomposition under low phosphorus concentrations. In contrast, interactions between bacteria and nematodes dominate at high phosphorus concentrations. The study indicates that adding phosphorus has nuanced bottom-up effects, intricately shaping the structure and activity of the pathways and underscoring the need for a comprehensive understanding of nutrient dynamics in soil ecosystems.

8.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2829-2835, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36384620

ABSTRACT

To clarify the impacts of long-term alfalfa plantation on the soil nematode community, soil samples were collected from different alfalfa growing ages (2 a, 9 a, 18 a) in the semi-arid area of Loess Plateau in Central Gansu by Illumina Miseq sequencing technology. The main controlling factors affecting its community change were also explored. The results showed that soil nematode belongs to 2 classes, 7 orders, 16 families and 21 genera. Among them, Chromadorea was the dominant group (44.6%-81.4%), the relative abundance of which decreased with alfalfa growing ages. Paratylenchus, Helicotylenchus, Xiphinema, Pristionchus, Ditylenchus, Panagrolaimus, Longidorus, Aprutides, Isolaimium and Aglenchus were the special nematode species of alfalfa, among which Paratylenchus (54.1%), Helicotylenchus (23.9%) and Xiphinema (21.9%) were the dominant nematodes in 2 a, 9 a and 18 a alfalfa soil respectively. Plant-parasitic nematode was the dominant group in alfalfa soil (31.8%-67.1%), and its relative abundance decreased at first and then increased with alfalfa growing ages. Results of redundancy analysis showed that soil available phosphorus and total nitrogen were the dominant environmental factors affecting community structure of soil nematodes in the region.


Subject(s)
Nematoda , Soil , Humans , Animals , Medicago sativa , Phosphorus/analysis , China
9.
Front Microbiol ; 13: 1002009, 2022.
Article in English | MEDLINE | ID: mdl-36212819

ABSTRACT

Strategies to reduce carbon emissions have been a hotspot in sustainable agriculture production. The delayed N fertilizer application had the potential to reduce carbon emissions in pea (Pisum sativum L.)/maize (Zea mays L.) intercropping, but its microbial mechanism remains unclear. In this study, we investigated the effects of delayed N fertilizer application on CO2 emissions and soil microbial diversity in pea/maize intercropping. The soil respiration (Rs) rates of intercropped pea and intercropped maize were decreased by 24.7% and 25.0% with delayed application of N fertilizer, respectively. The total carbon emissions (TCE) of the pea/maize intercropping system were also decreased by 21.1% compared with that of the traditional N fertilizer. Proteobacteria, Bacteroidota, and Chloroflexi were dominant bacteria in pea and maize strips. Heatmap analysis showed that the soil catalase activity at the pea flowering stage and the soil Ν Η 4 + - Ν at the maize silking stage contributed more to the variations of bacterial relative abundances than other soil properties. Network analysis demonstrated that Rs was positively related to the relative abundance of Proteobacteria and Bacteroidota, while negatively related to the relative abundance of Chloroflexi in the pea/maize intercropping system. Overall, our results suggested that the delayed application of N fertilizer combined with the pea/maize intercropping system altered soil bacterial community diversity, thereby providing novel insights into connections between soil microorganisms and agricultural carbon emissions.

10.
Plants (Basel) ; 11(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35890515

ABSTRACT

Maize is a cold-sensitive crop, and it exhibits severe retardation of growth and development when exposed to cold snaps during and right after seedling emergence. Although different agronomic, physiological, and molecular approaches have been tried to overcome the problems related to cold stress in recent years, the mechanisms causing cold resistance in maize are still unclear. Screening and breeding of varieties for cold resistance may be a sustainable option to boost maize production under low-temperature environments. Herein, seedlings of 39 different maize genotypes were treated under both 10 °C low temperature and 22 °C normal temperature conditions for 7 days, to assess the changes in seven growth parameters, two membrane characteristics, two reactive oxygen species (ROS) levels, and four antioxidant enzymes activities. The changes in ten photosynthetic performances, one osmotic substance accumulation, and three polyamines (PAs) metabolisms were also measured. Results indicated that significant differences among genotypes, temperature treatments, and their interactions were found in 29 studied traits, and cold-stressed seedlings were capable to enhance their cold resistance by maintaining high levels of membrane stability index (66.07%); antioxidant enzymes activities including the activity of superoxide dismutase (2.44 Unit g-1 protein), peroxidase (1.65 Unit g-1 protein), catalase (0.65 µM min-1 g-1 protein), and ascorbate peroxidase (5.45 µM min-1 g-1 protein); chlorophyll (Chl) content, i.e., Chl a (0.36 mg g-1 FW) and Chl b (0.40 mg g-1 FW); photosynthetic capacity such as net photosynthetic rate (5.52 µM m-2 s-1) and ribulose 1,5-biphosphate carboxylase activity (6.57 M m-2 s-1); PAs concentration, mainly putrescine (274.89 nM g-1 FW), spermidine (52.69 nM g-1 FW), and spermine (45.81 nM g-1 FW), particularly under extended cold stress. Importantly, 16 traits can be good indicators for screening of cold-resistant genotypes of maize. Gene expression analysis showed that GRMZM2G059991, GRMZM2G089982, GRMZM2G088212, GRMZM2G396553, GRMZM2G120578, and GRMZM2G396856 involved in antioxidant enzymes activity and PAs metabolism, and these genes may be used for genetic modification to improve maize cold resistance. Moreover, seven strong cold-resistant genotypes were identified, and they can be used as parents in maize breeding programs to develop new varieties.

11.
Ying Yong Sheng Tai Xue Bao ; 33(4): 1109-1117, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35543066

ABSTRACT

In order to understand the effects of lucerne cropping rotation on the bacterial community of loess soil, a long-term field experiment was conducted in rain-fed agricultural area of Loess Plateau. The cropping systems included continuous lucerne (Medicago sativa, LC), lucerne removed and rotated with spring wheat (Triticum aestivum, LFW), lucerne removed and rotated with corn (Zea mays, LFC), lucerne removed and rotated with potato (Solanum tuberosum, LP), and lucerne removed and rotated with continuous millet (Panicum miliaceum, LM). Based on 16S rRNA high-throughput sequencing technology, we investigated soil bacterial community structure and diversity in different cropping systems, and predicted ecological function using PICRUSt method. The results showed that the dominant phyla of loess soil bacteria were Actinomycetes (20.3%-32.0%), Proteobacteria (19.2%-23.0%), Acidobacteria (12.4%-14.2%) and Chloroflexus (11.0%-12.7%). The dominant genus was Bacillus (1.9%) in lucerne-corn system and Pseudarthrobacter (2.5%) in other treatments. Rotation with annual crops decreased the relative abundance of Actinobacteria and increased that of Chloroflexi and Firmicutes. Redundancy analysis showed that the main soil factors driving soil bacterial community structure were nitrate, ammonium, and total nitrogen. PICRUSt function prediction results showed that metabolism (78.6%-79.1%) was the main function of soil bacterial communities in loess soil. Rotation with continued annual crops significantly decreased the abundance of soil bacterial carbohydrate metabolism functional genes, and significantly increased the abundance of functional genes for soil bacterial cofactors and vitamin metabolism, neurodegenerative diseases, and immune system. In conclusion, lucerne removed and rotated with continuous annual crops changed soil bacterial community structure and ecological functions. This study provided theoretical reference to explore succession characteristics of soil bacteria and to select succeeding crops for alfalfa in loess soil.


Subject(s)
Actinobacteria , Soil , Actinobacteria/genetics , Bacteria/genetics , China , Crop Production , Crops, Agricultural , Medicago sativa , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Triticum/genetics , Zea mays/genetics
12.
Plants (Basel) ; 11(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35448762

ABSTRACT

Lignin is an important factor affecting agricultural traits. The mechanism of lignin metabolism in maize (Zea mays) mesocotyl elongation was investigated during seed germination. Maize seeds were treated with 24-epibrassinolide (EBR) and brassinazole stimulation under 3 and 20 cm deep-seeding stress. Mesocotyl transcriptome sequencing together with targeted metabolomics analysis and physiological measurements were employed in two contrasting genotypes. Our results revealed differentially expressed genes (DEGs) were significantly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, and alpha-linolenic acid metabolism. There were 153 DEGs for lignin biosynthesis pathway, 70 DEGs for peroxisome pathway, and 325 differentially expressed transcription factors (TFs) of MYB, NAC, WRKY, and LIM were identified in all comparisons, and highly interconnected network maps were generated among multiple TFs (MYB and WRKY) and DEGs for lignin biosynthesis and peroxisome biogenesis. This caused p-coumaraldehyde, p-coumaryl alcohol, and sinapaldehyde down-accumulation, however, caffeyl aldehyde and caffeyl alcohol up-accumulation. The sum/ratios of H-, S-, and G-lignin monomers was also altered, which decreased total lignin formation and accumulation, resulting in cell wall rigidity decreasing. As a result, a significant elongation of maize mesocotyl was detected under deep-seeding stress and EBR signaling. These findings provide information on the molecular mechanisms controlling maize seedling emergence under deep-seeding stress and will aid in the breeding of deep-seeding maize cultivars.

13.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457037

ABSTRACT

Mesocotyl length (MES) is an important trait that affects the emergence of maize seedlings after deep-seeding and is closely associated with abiotic stress. The elucidation of constitutive-QTLs (cQTLs) and candidate genes for MES and tightly molecular markers are thus of great importance in marker-assisted selection (MAS) breeding. Therefore, the objective of this study was to perform detailed genetic analysis of maize MES across 346 F2:3 families, 30/30 extreme bulks of an F2 population, and two parents by conventional QTL analysis, bulked-segregation analysis (BSA), and RNA-sequencing when maize was sown at the depths of 3, 15, and 20 cm, respectively. QTL analysis identified four major QTLs in Bin 1.09, Bin 3.04, Bin 4.06-4.07, and Bin 6.01 under two or more environments, which explained 2.89-13.97% of the phenotypic variance within a single environment. BSA results revealed the presence of seven significantly linked SNP/InDel regions on chromosomes 1 and 4, and six SNP/InDel regions and the major QTL of qMES4-1 overlapped and formed a cQTL, cQMES4, within the 160.98-176.22 Mb region. In total, 18,001 differentially expressed genes (DEGs) were identified across two parents by RNA-sequencing, and 24 of these genes were conserved core DEGs. Finally, we validated 15 candidate genes in cQMES4 to involve in cell wall structure, lignin biosyntheis, phytohormones (auxin, abscisic acid, brassinosteroid) signal transduction, circadian clock, and plant organ formation and development. Our findings provide a basis for MAS breeding and enhance our understanding of the deep-seeding tolerance of maize.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping/methods , Humans , Phenotype , RNA , Sequence Analysis, RNA , Zea mays/genetics
14.
Macromol Biosci ; 21(9): e2100162, 2021 09.
Article in English | MEDLINE | ID: mdl-34145960

ABSTRACT

Inflammation is closely related to a variety of fatal or chronic diseases. Hence, targeting inflammation provides an alternative approach to improve the therapeutic outcome of diseases such as solid tumors, neurological diseases, and metabolic diseases. Polysaccharides are natural components with immune regulation, anti-virus, anti-cancer, anti-inflammation, and anti-oxidation activities. Herein, this review highlights recent progress in the polysaccharide-based drug delivery systems for achieving inflammation targeting and its related disease treatment. Moreover, the chemical modification and the construction of polysaccharide materials for drug delivery are discussed in detail.


Subject(s)
Biocompatible Materials , Neoplasms , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Drug Carriers/therapeutic use , Drug Delivery Systems , Humans , Inflammation/drug therapy , Neoplasms/drug therapy , Polysaccharides/therapeutic use
15.
Biomaterials ; 275: 120902, 2021 08.
Article in English | MEDLINE | ID: mdl-34087588

ABSTRACT

Activated fibroblasts are critical contributors to renal interstitial fibrosis thus becoming the cellular target for fibrosis treatment. Previously, microRNA 29 b (miR-29 b) is shown to be down-regulated in various animal models of renal fibrosis. Herein, we describe a facile strategy to achieve localized and sustained delivery of therapeutic microRNA to the kidney via a host-guest supramolecular hydrogel. Specifically, cationic bovine serum albumin is used to complex with miR-29 b to afford nanocomplexes (cBSA/miR-29 b), which is proven to specifically inhibit fibroblast activation in a dose-dependent manner in vitro. Following unilateral ureteral obstruction in mice, a single injection of the hydrogel loaded with cBSA/miR-29 b in vivo, significantly down-regulated proteins and genes related to fibrosis for up to 21 days without affecting the normal liver or kidney functions. Overall, the localized delivery of cBSA/miR-29 b via a host-guest supramolecular hydrogel represents a safe and effective intervention strategy to delay and reverse the progression of interstitial renal fibrosis.


Subject(s)
Hydrogels , Kidney Diseases , MicroRNAs , Ureteral Obstruction , Animals , Delayed-Action Preparations , Fibrosis , Kidney/pathology , Kidney Diseases/pathology , Kidney Diseases/therapy , Mice , Mice, Inbred C57BL , MicroRNAs/therapeutic use , Ureteral Obstruction/pathology , Ureteral Obstruction/therapy
16.
Acta Pharm Sin B ; 10(4): 680-692, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32322470

ABSTRACT

Renal tubular epithelial cells (RTECs) are important target cells for the development of kidney-targeted drug delivery systems. Under physiological conditions, RTECs are under constant fluid shear stress (FSS) from original urine in the renal tubule and respond to changes of FSS by altering their morphology and receptor expression patterns, which may affect reabsorption and cellular uptake. Using a microfluidic system, controlled shear stress was applied to proximal tubule epithelial cell line HK-2. Next, 2-glucosamine, bovine serum albumin, and albumin nanoparticles were selected as representative carriers to perform cell uptake studies in HK-2 cells using the microfluidic platform system with controlled FSS. FSS is proven to impact the morphology of HK-2 cells and upregulate the levels of megalin and clathrin, which then led to enhanced cellular uptake efficiencies of energy-driven carrier systems such as macromolecular and albumin nanoparticles in HK-2 cells. To further investigate the effects of FSS on endocytic behavior mediated by related receptors, a mice model of acute kidney injury with reduced fluid shear stress was established. Consistent with in vitro findings, in vivo studies have also shown reduced fluid shear stress down-regulated the levels of megalin receptors, thereby reducing the renal distribution of albumin nanoparticles.

17.
Front Microbiol ; 9: 1909, 2018.
Article in English | MEDLINE | ID: mdl-30190708

ABSTRACT

The association of plants and microbial communities is crucial for crop production, and host plants influence the composition of rhizosphere microbiomes. Pulse crops play an important role in the development of sustainable cropping systems, and producers in the Canadian prairies often increase the frequency of pulses in their cropping systems. In this study, we determined the shifts in the fungal community of pea (Pisum sativum L.) rhizosphere, as influenced by the frequency of pulses in rotation, using high throughput sequencing. Six cropping systems containing pea (P), lentil (Lens culinaris Medik., L), hybrid canola (Brassica napus L., C), wheat (Triticum aestivum L., W), and oat (Avena sativa L., O) in different intensities were tested. The fungal communities were assessed at the flowering stage in the fourth and fifth year of the 4-year rotations. Cropping system had a significant impact on the composition of the rhizosphere fungal community, and the effect of crop rotation sequence was greater and explained more of the variation than the effect of previous crops. The rotation with consecutive pulses (WPLP) decreased fungal evenness and increased the proportion of pathotrophs. Fusarium was a dominant and ubiquitous pathotrophic genus. Olpidium virulentus, Botrytis cinerea, Fusarium solani, F. graminearum, and Alternaria eichhorniae were generally more abundant in pulse intensive rotations (WPLP, WLOP, and WPOP), the exception being F. solani which was not promoted by lentil. Reads of O. virulentus and B. cinerea were most abundant in pea preceded by lentil followed by the reads of Mortierella elongata in pea preceded by wheat. Pea consistently had higher grain yield when grown in diversified rotations including wheat, canola/lentil, and oat than rotations with two repeated crops (canola or pea). Cropping system affected the soil physicochemical properties, and soil pH was the main driver of fungal community shift. No evidence of beneficial microorganisms involvement in plant productivity was observed, but the high abundance of pathotrophs in pulse intensified rotations suggests the possibility of pathogen buildup in the soil with increasing pulse frequency. Diversifying rotation sequences minimized disease risk and increased pea production, in this study. Careful selection of plant species appears as a strategy for the management of rhizosphere fungal communities and the maintenance of crop production system's health.

18.
J Sci Food Agric ; 96(8): 2650-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26300314

ABSTRACT

BACKGROUND: This study determined the long-term effect of tillage systems on soil properties and crop yields in a semi-arid environment. Field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) were alternately grown in six tillage systems at Dingxi (35° 28' N, 104° 44' E), north-west China starting in 2001. RESULTS: After the first 6 years of experiments, conventional tillage with stubble incorporating (TS) and no-till with stubble cover (NTS) increased soil organic matter by 9.9% and 13.0%, respectively, compared to the conventional tillage with stubble removed (T); both TS and NTS also increased soil microbial counts, available K and P, and total N. No-till with stubble removed (NT), NTS and NTP (no-till with plastic mulching) had 20.7%, 62.6% and 43.7% greater alkaline phosphatase activity compared to the T treatment. Soil catalase, urease and invertase activities were all greater in the no-till treatments than in the T treatment. Averaged across 6 years, both wheat and pea achieved highest grain yields under NTS treatment. CONCLUSION: No-till with stubble retention is the most promising system for improving soil physical, biological and chemical properties, and increasing crop yields, and thus, this system can be adopted in areas with conditions similar to the semi-arid north-west China. © 2015 Society of Chemical Industry.


Subject(s)
Agriculture/methods , Crops, Agricultural , Soil/chemistry , China , Climate , Time Factors , Water
19.
Sci Rep ; 5: 14625, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26424172

ABSTRACT

Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on 'mining' soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas.

20.
Ying Yong Sheng Tai Xue Bao ; 26(10): 3059-65, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26995914

ABSTRACT

This paper investigated soil moisture in alfalfa (Medicago sativa) cropland with different growth years (1, 3, 8, 12 and 14 years) and discussed the optimum growth years of alfalfa on the Loess Plateau of central Gansu. The results showed that the soil moisture along 0-300 cm soil profile of alfalfa croplands with different growth years was obviously lower than that of the local soil stable moisture. The soil water contents in croplands with alfalfa that had grown for 12 and 14 years were only 9.2% and 7.1% of local soil stable moisture, respectively, which were even lower than the lower limit of alfalfa growth. The average soil dryness indexes along 0-300 cm soil profile in 1, 3, 8, 12 and 14 years alfalfa croplands were 125.4%, 30.5%, 18.4%, -34.2% and -83.3% respectively. The results indicated that soil dryness occurred to varying degrees with different growth years except croplands with alfalfa grown for 1 year. With the increase of growth years of alfalfa, the soil dryness intensity increased and the soil dryness rate decreased. According to the soil moisture and alfalfa productivity results in this study, it could be concluded that the optimum growth years of alfalfa are 8-10 years in semiarid areas of the Loess Plateau.


Subject(s)
Medicago sativa/growth & development , Soil , Water , China , Crops, Agricultural/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...