Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652553

ABSTRACT

Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.


Subject(s)
Mice, Inbred C57BL , Photic Stimulation , Animals , Photic Stimulation/methods , Mice , Male , Contrast Sensitivity/physiology , Visual Cortex/physiology , Neurons/physiology , Primary Visual Cortex/physiology , Species Specificity , Voltage-Sensitive Dye Imaging , Macaca mulatta
2.
Cereb Cortex ; 33(9): 5192-5209, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36300613

ABSTRACT

Intracortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of a small point of light, termed phosphene, and evoke saccades directed to the receptive field of the stimulated neurons. Although ICMS is widely used, a direct measurement of the spatio-temporal patterns of neural activity evoked by ICMS and their relation to the neural responses evoked by visual stimuli or how they relate to ICMS-evoked saccades are still missing. To investigate this, we combined ICMS with voltage-sensitive dye imaging in V1 of behaving monkeys and measured neural activity at a high spatial (meso-scale) and temporal resolution. We then compared the population response evoked by small visual stimuli to those evoked by microstimulation. Both stimulation types evoked population activity that spread over few millimeters in V1 and propagated to extrastriate areas. However, the population responses evoked by ICMS have shown faster dynamics for the activation transients and the horizontal propagation of activity revealed a wave-like propagation. Finally, neural activity in the ICMS condition was higher for trials with evoked saccades as compared with trials without saccades. Our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.


Subject(s)
Primary Visual Cortex , Saccades , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...