Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17499, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37840103

ABSTRACT

Human neutrophil peptides (HNPs) can induce cell proliferation and activation so their growth promoting activities may have potential clinical benefit. This study investigated the effects of HNPs on human dermal fibroblasts. Differential gene expression in HNP-treated cells and genes involved in regulating intracellular pathways were explored. Dermal fibroblasts were isolated from healthy neonatal foreskin and treated with HNPs in 2D and 3D cell culture systems. The expression of cell proliferation (Ki-67) gene and cell activation (COL1A1) gene plus their proteins was measured. Differential gene expression was determined using RNA-seq, and upregulated and downregulated genes were mapped onto intracellular pathways by KEGG analysis and Gene Ontology databases. HNPs significantly increased cell proliferation without cytotoxicity whilst HNP1 enhanced expression of COL1A1 and type I collagen production in 2D cells and 3D spheroids. RNA-sequencing analysis showed gene clustering with clear separation between HNP1-treated and control groups. A heatmap of top 50 differentially expressed genes was consistent among HNP1-treated samples. Most upregulated genes were associated with cell proliferation and activation as mapped into intracellular pathways whilst most downregulated genes belonged to steroid/arachidonic acid metabolism and inflammatory signaling pathways. HNP1 increased cell proliferation and activation but reduced lipid metabolism and inflammation.


Subject(s)
Neutrophils , alpha-Defensins , Infant, Newborn , Humans , Neutrophils/metabolism , alpha-Defensins/metabolism , Signal Transduction , Skin/metabolism , Fibroblasts/metabolism
2.
Int J Dermatol ; 61(5): 532-540, 2022 May.
Article in English | MEDLINE | ID: mdl-34432296

ABSTRACT

Host defense peptides (HDPs) or antimicrobial peptides (AMPs) are short cationic amphipathic peptides of divergent sequences, which are part of the innate immune system and produced by various types of cells and tissues. The predominant role of HDPs is to respond to and protect humans against infection and inflammation. Common human HDPs include defensins, cathelicidin, psoriasin, dermcidin, and ribonucleases, but these peptides may be dysregulated in the skin of patients with atopic dermatitis (AD). Current evidence suggests that the antimicrobial properties and immunomodulatory effects of HDPs are involved in AD pathogenesis, making HDPs research a promising area for predicting disease severity and developing novel treatments for AD. In this review, we describe a potential role for human HDPs in the development, exacerbation, and progression of AD and propose their potential therapeutic benefits.


Subject(s)
Antimicrobial Peptides , Dermatitis, Atopic , Dermatitis, Atopic/drug therapy , Humans , Immunomodulation , Inflammation , Skin
3.
Int J Microbiol ; 2020: 3972415, 2020.
Article in English | MEDLINE | ID: mdl-32676114

ABSTRACT

Aspergillus flavus is one of the most common isolates from patients with fungal infections. Aspergillus infection is usually treated with antifungal agents, but side effects of these agents are common. Trehalase is an essential enzyme involved in fungal metabolism, and the trehalase inhibitor, validamycin A, has been used to prevent fungal infections in agricultural products. In this study, we observed that validamycin A significantly increased trehalose levels in A. flavus conidia and delayed germination, including decreased fungal adherence. In addition, validamycin A and amphotericin B showed a combinatorial effect on A. flavus ATCC204304 and clinical isolates with high minimum inhibitory concentrations (MICs) of amphotericin B using checkerboard assays. We observed that validamycin A and amphotericin B had a synergistic effect on A. flavus strains resistant to amphotericin B. The MICs in the combination of validamycin A and amphotericin B were at 0.125 µg/mL and 2 µg/mL, respectively. The FICI of validamycin A and amphotericin B of these clinical isolates was about 0.25-0.28 with synergistic effects. No drug cytotoxicity was observed in human bronchial epithelial cells treated with validamycin A using LDH-cytotoxicity assays. In conclusion, this study demonstrated that validamycin A inhibited the growth of A. flavus and delayed conidial germination. Furthermore, the combined effect of validamycin A with amphotericin B increased A. flavus killing, without significant cytotoxicity to human bronchial epithelial cells. We propose that validamycin A could potentially be used in vivo as an alternative treatment for A. flavus infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...