Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 918: 170666, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316310

ABSTRACT

Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.

2.
Chemosphere ; 234: 450-460, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31228847

ABSTRACT

Perturbation of Fe(III)-bearing oxic environments by reduced species such as sulfide occurs widely in natural and engineered systems. However, whether hydroxyl radicals (OH) can be produced in these environments remains unexplored. Here we show that sulfide drives OH production in Fe(III) oxyhydroxides suspensions under neutral and oxic conditions. For lepidocrocite, ferrihydrite and goethite suspensions at 11.2 mM Fe, the addition of 0.5 mM sulfide produced 14.2, 14.3 and 22.4 µM OH within 120 min, respectively. With addition of sulfide to lepidocrocite suspensions at 11.2 mM Fe, the cumulative OH concentration within 120 min increased from 0 to 14.2, 25.2, 52.6 and 63.1 µM when sulfide dosage increased from 0 to 0.5, 2.5, 5 and 7.5 mM, respectively. At a fixed sulfide dosage of 5 mM, the cumulative OH concentration increased with increasing the number of sulfide additions. The mechanisms of OH production were attributed to the generation of surface-bound Fe(II), most likely in the form of >FeIIOH2+, and Fe(II) in the solid phase or FeS from the reactions between sulfide and Fe(III), followed by O2 activation. OH production could take place until depletion of sulfide. Finally, we found that the generated OH could oxidize the coexisting redox-active substances like phenol under neutral and oxic conditions. Our findings reveal that sulfide perturbation of Fe(III)-bearing oxic environments is a new source of OH, and contaminants oxidation by OH necessitates consideration in these environments.


Subject(s)
Ferric Compounds/chemistry , Hydroxyl Radical/chemistry , Sulfides/chemistry , Environmental Pollutants/chemistry , Iron Compounds , Minerals , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...