Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37103189

ABSTRACT

Dengue is endemic in Malaysia, and vector control strategies are vital to reduce dengue transmission. The Wolbachia strain wAlbB carried by both sexes of Ae. aegypti was released in Mentari Court, a high-rise residential site, in October 2017 and stopped after 20 weeks. Wolbachia frequencies are still being monitored at multiple traps across this site, providing an opportunity to examine the spatiotemporal distribution of Wolbachia and mosquito density with respect to year, residential block, and floor, using spatial interpolation in ArcGIS, GLMs, and contingency analyses. In just 12 weeks, Wolbachia-infected mosquitoes were established right across the Mentari Court site with an overall infection frequency of >90%. To date, the Wolbachia frequency of Ae. aegypti has remained high in all areas across the site despite releases finishing four years ago. Nevertheless, the Wolbachia invaded more rapidly in some residential blocks than others, and also showed a relatively higher frequency on the eighth floor. The Ae. aegypti index tended to differ somewhat between residential blocks, whilst the Ae. albopictus index was relatively higher at the top and bottom floors of buildings. In Mentari Court, only a short release period was required to infiltrate Wolbachia completely and stably into the natural population. The results inform future releases in comparable sites in a dengue control programme.

2.
Curr Biol ; 29(24): 4241-4248.e5, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31761702

ABSTRACT

Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.


Subject(s)
Aedes/microbiology , Dengue/prevention & control , Pest Control, Biological/methods , Wolbachia/metabolism , Aedes/genetics , Aedes/metabolism , Animals , Dengue Virus/metabolism , Dengue Virus/pathogenicity , Female , Humans , Insect Vectors , Malaysia , Male , Mosquito Vectors , Wolbachia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL