Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(5): 1818-29, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26871940

ABSTRACT

A potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques. The isolated metabolites recovered from the NMR experiments were then submitted directly to an in vitro FIXa enzymatic assay. The order of the metabolites' binding affinity to the Factor IXa protein from the ALIS assay was completely consistent with the enzymatic assay results. This work showcases an innovative and efficient approach to uncover structure-activity relationships (SARs) and guide drug design via microisolation-structural characterization and ALIS capabilities.


Subject(s)
Automation , Drug Design , Factor IXa/antagonists & inhibitors , Fibrinolytic Agents/pharmacology , Nuclear Magnetic Resonance, Biomolecular , Animals , Dose-Response Relationship, Drug , Factor IXa/metabolism , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Humans , Ligands , Molecular Structure , Rats , Structure-Activity Relationship
2.
Basic Clin Pharmacol Toxicol ; 103(1): 36-42, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18346052

ABSTRACT

Cytosolic malic enzyme (ME-1) is a nicotinamide adenine dinucleotide phosphate (NADP)-dependent enzyme that generates NADPH. The activity of this enzyme, the reversible oxidative decarboxylation of malate to yield pyruvate, links glycolytic pathway to citric acid cycle. The high level of ME-1 expression in liver, and its involvement in NADPH production, suggests reduced ME-1 activity might compromise hepatic production of reduced glutathione (GSH) by the NADPH-dependent enzyme glutathione reductase, and hence affect xenobiotic detoxification. The role of ME-1 in liver detoxification was evaluated in Mod1 deficient mice (mod1(-/-)) by evaluating their sensitivity to acetaminophen-induced liver injury. The results show that mod1(-/-) mice are not more sensitive to acetaminophen hepato-toxicity. Although GSH levels were initially depleted more in the mod1(-/-) liver than in wild-type controls, the GSH levels recovered quickly. In conclusion, our data indicate that ME-1 deficiency does not adversely affect GSH-dependent detoxification.


Subject(s)
Acetaminophen/toxicity , Analgesics/toxicity , Chemical and Drug Induced Liver Injury/enzymology , Liver/enzymology , Malate Dehydrogenase/metabolism , Animals , Chemical and Drug Induced Liver Injury/pathology , Cytosol/enzymology , Genotype , Glutathione/metabolism , Liver/pathology , Malate Dehydrogenase/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , NADP/metabolism
3.
Biochemistry ; 41(3): 788-96, 2002 Jan 22.
Article in English | MEDLINE | ID: mdl-11790100

ABSTRACT

S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each subunit of S100A1 has four alpha-helices and a small antiparallel beta-sheet consistent with two helix-loop-helix calcium-binding domains [Baldiserri et al. (1999) J. Biomol. NMR 14, 87-88]. In this study, the three-dimensional structure of reduced apo-S100A1 was determined by NMR spectroscopy using a total of 2220 NOE distance constraints, 258 dihedral angle constraints, and 168 backbone hydrogen bond constraints derived from a series of 2D, 3D, and 4D NMR experiments. The final structure was found to be globular and compact with the four helices in each subunit aligning to form a unicornate-type four-helix bundle. Intermolecular NOE correlations were observed between residues in helices 1 and 4 from one subunit to residues in helices 1' and 4' of the other subunit, respectively, consistent with the antiparallel alignment of the two subunits to form a symmetric X-type four-helix bundle as found for other members of the S100 protein family. Because of the similarity of the S100A1 dimer interface to that found for S100B, it was possible to calculate a model of the S100A1/B heterodimer. This model is consistent with a number of NMR chemical shift changes observed when S100A1 is titrated into a sample of (15)N-labeled S100B. Helix 3 (and 3') of S100A1 was found to have an interhelical angle of -150 degrees with helix 4 (and 4') in the apo state. This crossing angle is quite different (>50 degrees ) from that typically found in other EF-hand containing proteins such as apocalmodulin and apotroponin C but more similar to apo-S100B, which has an interhelical angle of -166 degrees. As with S100B, it is likely that the second EF-hand of apo-S100A1 reorients dramatically upon the addition of Ca(2+), which can explain the Ca(2+) dependence that S100A1 has for binding several of its biological targets.


Subject(s)
Apoproteins/chemistry , Calcium-Binding Proteins/chemistry , Carbon Isotopes , Cloning, Molecular , Dimerization , Escherichia coli , Magnetic Resonance Spectroscopy , Models, Molecular , Nitrogen Isotopes , Protein Conformation , Protein Structure, Secondary , Protein Subunits , S100 Proteins , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...