Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 106(12): 4655-4667, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35713658

ABSTRACT

Basidiomycetous yeasts remain an almost unexplored source of enzymes with great potential in several industries. Tausonia pullulans (Tremellomycetes) is a psychrotolerant yeast with several extracellular enzymatic activities reported, although the responsible genes are not known. We performed the genomic sequencing, assembly and annotation of T. pullulans strain CRUB 1754 (Perito Moreno glacier, Argentina), a gene survey of carbohydrate-active enzymes (CAZymes), and analyzed its secretome by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) after growth in glucose (GLU) or starch (STA) as main carbon sources. T. pullulans has 7210 predicted genes, 3.6% being CAZymes. When compared to other Tremellomycetes, it contains a high number of CAZy domains, and in particular higher quantities of glucoamylases (GH15), pectinolytic enzymes (GH28) and lignocellulose decay enzymes (GH7). When the secretome of T. pullulans was analyzed experimentally after growth in starch or glucose, 98 proteins were identified. The 60% of total spectral counts belonged to GHs, oxidoreductases and to other CAZymes. A 65 kDa glucoamylase of family GH15 (TpGA1) showed the highest fold change (tenfold increase in starch). This enzyme contains a conserved active site and showed extensive N-glycosylation. This study increases the knowledge on the extracellular hydrolytic enzymes of basidiomycetous yeasts and, in particular, establishes T. pullulans as a potential source of carbohydrate-active enzymes. KEY POINTS: • Tausonia pullulans genome harbors a high number of genes coding for CAZymes. • Among CAZy domains/families, the glycoside hydrolases are the most abundant. • Secretome analysis in glucose or starch as main C sources identified 98 proteins. • A 65 kDa GH15 glucoamylase showed the highest fold increase upon culture in starch.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Proteomics , Basidiomycota , Chromatography, Liquid , Glucan 1,4-alpha-Glucosidase/genetics , Glucan 1,4-alpha-Glucosidase/metabolism , Glucose , Hydrolysis , Starch , Tandem Mass Spectrometry
2.
FEMS Yeast Res ; 21(1)2021 01 22.
Article in English | MEDLINE | ID: mdl-33232451

ABSTRACT

Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.


Subject(s)
Adaptation, Physiological/genetics , Basidiomycota/genetics , Cold Temperature , Genome, Microbial , Antarctic Regions , Evolution, Molecular , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...