Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36835573

ABSTRACT

Cytochrome P450 monooxygenases (CYPs/P450s) and their redox partners, ferredoxins, are ubiquitous in organisms. P450s have been studied in biology for over six decades owing to their distinct catalytic activities, including their role in drug metabolism. Ferredoxins are ancient proteins involved in oxidation-reduction reactions, such as transferring electrons to P450s. The evolution and diversification of P450s in various organisms have received little attention and no information is available for archaea. This study is aimed at addressing this research gap. Genome-wide analysis revealed 1204 P450s belonging to 34 P450 families and 112 P450 subfamilies, where some families and subfamilies are expanded in archaea. We also identified 353 ferredoxins belonging to the four types 2Fe-2S, 3Fe-4S, 7Fe-4S and 2[4Fe-4S] in 40 archaeal species. We found that bacteria and archaea shared the CYP109, CYP147 and CYP197 families, as well as several ferredoxin subtypes, and that these genes are co-present on archaeal plasmids and chromosomes, implying the plasmid-mediated lateral transfer of these genes from bacteria to archaea. The absence of ferredoxins and ferredoxin reductases in the P450 operons suggests that the lateral transfer of these genes is independent. We present different scenarios for the evolution and diversification of P450s and ferredoxins in archaea. Based on the phylogenetic analysis and high affinity to diverged P450s, we propose that archaeal P450s could have diverged from CYP109, CYP147 and CYP197. Based on this study's results, we propose that all archaeal P450s are bacterial in origin and that the original archaea had no P450s.


Subject(s)
Archaea , Ferredoxins , Humans , Ferredoxins/metabolism , Archaea/metabolism , Phylogeny , Oxidation-Reduction , Cytochrome P-450 Enzyme System/metabolism , Bacteria/metabolism
2.
Int J Mol Sci ; 23(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35563448

ABSTRACT

Species belonging to the bacterial phyla Bacteroidetes and Firmicutes represent over 90% of the gastrointestinal microbiota. Changes in the ratio of these two bacterial groups were found to have contrasting health effects, including obesity and inflammatory diseases. Despite the availability of many bacterial genomes, comparative genomic studies on the gene pools of these two bacterial groups concerning cytochrome P450 monooxygenases (P450s), ferredoxins, and secondary metabolite biosynthetic gene clusters (smBGCs) are not reported. This study is aimed to address this research gap. The study revealed the presence of diverse sets of P450s, ferredoxins, and smBGCs in their genomes. Bacteroidetes species have the highest number of P450 families, ferredoxin cluster-types, and smBGCs compared to Firmicutes species. Only four P450 families, three ferredoxin cluster types, and five smBGCs are commonly shared between these two bacterial groups. Considering the above facts, we propose that the contrasting effects of these two bacterial groups on the host are partly due to the distinct nature of secondary metabolites produced by these organisms. Thus, the cause of the contrasting health effects of these two bacterial groups lies in their gene pools.


Subject(s)
Bacteroidetes , Cytochrome P-450 Enzyme System , Ferredoxins , Firmicutes , Secondary Metabolism , Bacteroidetes/genetics , Cytochrome P-450 Enzyme System/genetics , Ferredoxins/genetics , Firmicutes/genetics , Gastrointestinal Microbiome/genetics , Humans , Phylogeny , Secondary Metabolism/genetics
3.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35628630

ABSTRACT

For the last six decades, cytochrome P450 monooxygenases (CYPs/P450s), heme thiolate proteins, have been under the spotlight due to their regio- and stereo-selective oxidation activities, which has led to the exploration of their applications in almost all known areas of biology. The availability of many genome sequences allows us to understand the evolution of P450s in different organisms, especially in the Bacteria domain. The phenomenon that "P450s play a key role in organisms' adaptation vis a vis lifestyle of organisms impacts P450 content in their genome" was proposed based on studies on a handful of individual bacterial groups. To have conclusive evidence, one must analyze P450s and their role in secondary metabolism in species with diverse lifestyles but that belong to the same category. We selected species of the phylum Proteobacteria classes, Alpha, Beta, Gamma, Delta, and Epsilon, to address this research gap due to their diverse lifestyle and ancient nature. The study identified that the lifestyle of alpha-, beta-, gamma-, delta-, and epsilon-proteobacterial species profoundly affected P450 profiles in their genomes. The study determined that irrespective of the species associated with different proteobacterial classes, pathogenic species or species adapted to a simple lifestyle lost or had few P450s in their genomes. On the contrary, species with saprophytic or complex lifestyles had many P450s and secondary metabolite biosynthetic gene clusters. The study findings prove that the phenomenon mentioned above is factual, and there is no link between the number and diversity of P450s and the age of the bacteria.


Subject(s)
Bacteria , Cytochrome P-450 Enzyme System , Bacteria/genetics , Bacteria/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Phylogeny , Proteobacteria/genetics , Proteobacteria/metabolism , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL