Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(2)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36831065

ABSTRACT

ß-glucan, a plant polysaccharide, mainly exists in plant cell walls of oats, barley, and wheat. It is attracting attention due to its high potential for use as functional foods and pharmaceuticals. We have previously reported that low-molecular-weight Aureobasidium pullulans-fermented ß-D-glucan (LMW-AP-FBG) could inhibit inflammatory responses by inhibiting mitogen-activated protein kinases and nuclear factor-κB signaling pathways. Bases on previous results, the objective of the present study was to investigate the therapeutic potential of LMW-AP-FBG in BALB/c mice intracutaneously transplanted with CT-26 colon cancer cells onto their backs. Daily intraperitoneal injections of LMW-AP-FBG (5 mg/kg) for two weeks significantly suppressed tumor growth in mice bearing CT-26 tumors by reducing tumor proliferation and inducing apoptosis as compared to phosphate buffer-treated control mice. In addition, LMW-AP-FBG treatment reduced the viability of CT-26 cells in a dose-dependent manner by inducing apoptosis with loss of mitochondrial transmembrane potential and increased activated caspases. Taken together, LMW-AP-FBG exhibits anticancer properties both in vivo and in vitro.

2.
Anim Cells Syst (Seoul) ; 25(5): 272-282, 2021.
Article in English | MEDLINE | ID: mdl-34745434

ABSTRACT

Zea mays L. (Poaceae), also known as purple corn, is an annual herbaceous plant that is grown as food for human consumption in a variety of forms, including cooking oils and sweeteners in processed food and beverage products. The purpose of this study was to determine whether a novel purple corn extract, FB801, might have an anti-atopic dermatitis (AD) effect on AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) in BALB/c mice. Topical sensitization (1%) and challenge (0.3%) by DNCB were performed on the dorsal skin and right ear of BALB/c mice to induce AD. Following FB801 and dexamethasone administered orally, the severity of skin lesions was examined macroscopically and histologically. Serum levels of immunoglobulin E (IgE) and various cytokines were determined by enzyme-linked immunosorbent assay. Oral administration of FB801 significantly reduced typical symptoms of AD (erythema/bleeding, swelling, molting/erosion and scaling/drying), scratching frequencies, and the recruitment of inflammatory and mast cells. In addition, FB801 suppressed serum levels of IgE and T helper (Th)2 type cytokines such as interleukin (IL)-4 and IL-10 in DNCB-treated BALB/c mice. Furthermore, FB801 reduced the degradation of inhibitor of nuclear factor-κB proteins (NF-κB) in tumor necrosis factor (TNF)-α-stimulated human keratinocyte (HaCaT) cells. These results suggest that FB801 inhibited the development of the AD-like skin symptoms by regulating Th1 and Th2 responses in the skin lesions in mice and suppressing TNF-α induced NF-κB activation in HaCaT cells, suggesting that FB801 has potential application as an effective alternative therapy for the prevention and management of AD.

3.
Int J Biol Macromol ; 193(Pt A): 592-600, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34678386

ABSTRACT

ß-glucan derived from the black yeast Aureobasidium pullulans (A. pullulans) is one of the natural products attracting attention due to its high potential for application as a functional food and pharmaceutical. Our team of researchers obtained a highly soluble, low-molecular-weight ß-glucan from the fermentation culture medium of A. pullulans via mechanochemical ball milling method, that is, the low-molecular-weight A. pullulans-fermented ß-D-glucan (LMW-AP-FBG). We investigated the anti-inflammatory effect of LMW-AP-FBG using lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells) in the current study. LMW-AP-FBG altered LPS-stimulated inflammatory responses by reducing the release of inflammatory mediators such as nitric oxide (NO), interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α. As well, the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways were downregulated by LMW-AP-FBG. Furthermore, LMW-AP-FBG markedly reduced LPS-induced expression of cell surface molecules, CD14, CD86, and MHC class II, which mediate macrophage activation. These findings suggest that LMW-AP-FBG can be used as an effective immune modulator to attenuate the progression of inflammatory disease.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Aureobasidium/metabolism , beta-Glucans/chemistry , beta-Glucans/pharmacology , Animals , Cytokines/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/adverse effects , Macrophages/drug effects , Mice , Mitogen-Activated Protein Kinases/metabolism , Molecular Weight , NF-kappa B/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , beta-Glucans/metabolism
4.
Chem Biol Interact ; 327: 109185, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32590072

ABSTRACT

The present study examined the apoptotic effects and the underlying mechanism of sappanchalcone, a major bioactive compound isolated from Caesalpinia sappan L. on human colon cancer cells. To achieve this, we used two different colon cancer cell lines, namely HCT116 (as wild-type p53 cells) and SW480 (as p53-mutant cells) cells. Our results illustrated that sappanchalcone treatment decreased the proliferation and further promoted apoptosis in HCT116 cells compared with the findings in SW480 cells. Sappanchalcone triggered phosphorylation of p53, which is involved in the activation of caspases and increased expression of Bax in HCT116 cells. Conversely, sappanchalcone-treated SW480 cells displayed no change in p53 phosphorylation or caspase activation. In addition, sappanchalcone further increased reactive oxygen species (ROS) levels and apoptosis-inducing factor (AIF) release in both HCT116 and SW480 cells. These data suggest that sappanchalcone induces apoptosis through caspase-dependent and caspases-independent mechanisms that were characterized by decreased Bcl-2 expression, mitochondrial targeting, and altered ROS production and AIF translocation to the nuclei.


Subject(s)
Apoptosis Inducing Factor/metabolism , Apoptosis/drug effects , Caspases/metabolism , Chalcones/pharmacology , Colonic Neoplasms/metabolism , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...