Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Mar Environ Res ; 199: 106596, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905865

ABSTRACT

The health of migratory eastern Australian humpback whales (Megaptera novaeangliae) can reflect the condition of their remote polar foraging environments. This study used gene expression (LEP, LEPR, ADIQ, AhR, TNF-α, HSP-70), blubber hormone concentrations (cortisol, testosterone), and photogrammetric body condition to assess this sentinel species during a period of unprecedented changes to anthropogenic activity and natural processes. The results revealed higher cortisol concentrations in 2020 compared to 2021, suggesting a decline in physiological stress between years. Additionally, metabolic transcripts LEPR, and AhR, which is also linked to xenobiotic metabolism, were upregulated during the 2020 southbound migration. These differences suggest that one or more environmental stressors were reduced between 2020 and 2021, with upregulated AhR possibly indicating a Southern Ocean pollutant declined between the years. This research confirms a Southern Ocean-wide decrease in whale stress during the study period and informs efforts to identify key stressors on Antarctic marine ecosystems.

2.
J Acoust Soc Am ; 153(4): 2238, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37092914

ABSTRACT

Individually distinctive acoustic signals in animal vocal communication are taxonomically widespread, however, the investigation of these signal types in marine mammals has focused only on a few species. Humpback whale songs are a stereotyped, hierarchically structured vocal display performed by males, and hence thought to be sexually selected. Within a population, whales conform to a common version of the song despite the song constantly evolving. While humpback songs have been studied extensively at the population level, individual level variation has been rarely described, with inconclusive results. Here, we quantified inter- and intra-individual variability at different levels in the song hierarchy using songs from 25 singers across two song types from the eastern Australian population song of 2002 (12 singers), and the revolutionary song introduced in 2003 (13 singers). Inter-individual variability was found heterogeneously across all hierarchical levels of the song structure. In addition, distinct and individually specific patterns of song production were consistently recorded across song levels, with clear structural differences between the two song types. These results suggest that within the constraints of song conformity, males can produce individually distinctive patterns that could function as an advertisement to females to convey individual qualities.


Subject(s)
Humpback Whale , Singing , Humans , Animals , Male , Female , Australia , Vocalization, Animal , Social Behavior
3.
R Soc Open Sci ; 9(8): 220556, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36016912

ABSTRACT

The large size of free-ranging mysticetes, such as humpback whales (Megaptera novaeangliae), make capture and release health assessments unfeasible for conservation research. However, individual energetic condition or reproductive health may be assessed from the gene expression of remotely biopsied tissue. To do this, researchers must reliably extract RNA and interpret gene expression measurements within the context of an individual's sex. Here, we outline an RNA extraction protocol from blubber tissue and describe a novel mammalian RNA sex determination method. Our method consists of a duplex reverse transcription-quantitative (real-time) polymerase chain reaction (RT-qPCR) with primer sets for a control gene (ACTB) and the X-chromosome inactivation gene (XIST). Products of each RT-qPCR had distinct melting temperature profiles based on the presence (female) or absence (male) of the XIST transcript. Using high-resolution melt analysis, reactions were sorted into one of two clusters (male/female) based on their melting profiles. We validated the XIST method by comparing results with a standard DNA-based method. With adequate quantities of RNA (minimum of approx. 9 ng µl-1), the XIST sex determination method shows 100% agreement with traditional DNA sex determination. Using the XIST method, future cetacean health studies can interpret gene expression within the context of an individual's sex, all from a single extraction.

4.
Sci Rep ; 12(1): 8999, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637205

ABSTRACT

Among animal species, the songs of male humpback whales (Megaptera novaeangliae) are a rare example of social learning between entire populations. Understanding fine-scale similarity in song patterns and structural features will better clarify how accurately songs are learned during inter-population transmission. Here, six distinct song types (2009-2015) transmitted from the east Australian to New Caledonian populations were quantitatively analysed using fine-scale song features. Results found that New Caledonian whales learned each song type with high accuracy regardless of the pattern's complexity. However, there were rare instances of themes (stereotyped patterns of sound units) only sung by a single population. These occurred more often in progressively changing 'evolutionary' songs compared to rapidly changing 'revolutionary' songs. Our results suggest that populations do not need to reduce complexity to accurately learn song patterns. Populations may also incorporate changes and embellishments into songs in the form of themes which are suggested to be learnt as distinct segments. Maintaining complex song patterns with such accuracy suggests significant acoustic contact, supporting the hypothesis that song learning may occur on shared feeding grounds or migration routes. This study improves the understanding of inter-population mechanisms for large-scale cultural transmission in animals.


Subject(s)
Humpback Whale , Acoustics , Animals , Australia , Male , Sound Spectrography , Vocalization, Animal
5.
Ecol Evol ; 12(2): e8604, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35154661

ABSTRACT

Acoustic communication is important for animals with dependent young, particularly when they are spatially separated. Maternal humpback whales (Megaptera novaeangliae) use acoustic calling to help minimize the risk of separation from their young calves during migration. These pairs also use acoustic crypsis to minimize detection by males. How they balance a restricted active space with the need to maintain acoustic contact during periods of separation is not yet understood. Here, we analyzed movement metrics of tagged adult female-calf pairs during migration to identify two behavioral states, "resting/milling" and "travelling." When travelling, these pairs dived synchronously and exhibited little to no spatial separation. Alternatively, adult females had significantly longer dive durations (p < .01) when resting, and while they spent prolonged times at depth, calves would surface several times independently. This demonstrated that these pairs are frequently separated during periods of rest. We then determined whether the call rates and acoustic levels of these pairs increased with more frequent separation, finding that both adult females and calves significantly increased their call rates, but not levels, when resting. We also found that adult female-calf pairs have a restricted active space, with less than 15% of calls estimated to be detectable beyond 2 km. However, as with call level, detection distance did not differ significantly between the two behavioral states. In summary, adult female-calf pairs maintain successful communication during periods of separation by calling more frequently rather than by producing louder calls. This strategy aids in maintaining acoustic contact while simultaneously limiting detectability by conspecifics.

6.
Philos Trans R Soc Lond B Biol Sci ; 377(1843): 20200313, 2022 01 31.
Article in English | MEDLINE | ID: mdl-34894734

ABSTRACT

Culture presents a second inheritance system by which innovations can be transmitted between generations and among individuals. Some vocal behaviours present compelling examples of cultural evolution. Where modifications accumulate over time, such a process can become cumulative cultural evolution. The existence of cumulative cultural evolution in non-human animals is controversial. When physical products of such a process do not exist, modifications may not be clearly visible over time. Here, we investigate whether the constantly evolving songs of humpback whales (Megaptera novaeangliae) are indicative of cumulative cultural evolution. Using nine years of song data recorded from the New Caledonian humpback whale population, we quantified song evolution and complexity, and formally evaluated this process in light of criteria for cumulative cultural evolution. Song accumulates changes shown by an increase in complexity, but this process is punctuated by rapid loss of song material. While such changes tentatively satisfy the core criteria for cumulative cultural evolution, this claim hinges on the assumption that novel songs are preferred by females. While parsimonious, until such time as studies can link fitness benefits (reproductive success) to individual singers, any claims that humpback whale song evolution represents a form of cumulative cultural evolution may remain open to interpretation. This article is part of a discussion meeting issue 'The emergence of collective knowledge and cumulative culture in animals, humans and machines'.


Subject(s)
Cultural Evolution , Humpback Whale , Animals , Female , Reproduction , Vocalization, Animal
7.
Proc Biol Sci ; 288(1949): 20202718, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33878919

ABSTRACT

A key goal of conservation is to protect biodiversity by supporting the long-term persistence of viable, natural populations of wild species. Conservation practice has long been guided by genetic, ecological and demographic indicators of risk. Emerging evidence of animal culture across diverse taxa and its role as a driver of evolutionary diversification, population structure and demographic processes may be essential for augmenting these conventional conservation approaches and decision-making. Animal culture was the focus of a ground-breaking resolution under the Convention on the Conservation of Migratory Species of Wild Animals (CMS), an international treaty operating under the UN Environment Programme. Here, we synthesize existing evidence to demonstrate how social learning and animal culture interact with processes important to conservation management. Specifically, we explore how social learning might influence population viability and be an important resource in response to anthropogenic change, and provide examples of how it can result in phenotypically distinct units with different, socially learnt behavioural strategies. While identifying culture and social learning can be challenging, indirect identification and parsimonious inferences may be informative. Finally, we identify relevant methodologies and provide a framework for viewing behavioural data through a cultural lens which might provide new insights for conservation management.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Animals, Wild , Biological Evolution , Learning
8.
JASA Express Lett ; 1(6): 061201, 2021 06.
Article in English | MEDLINE | ID: mdl-36154369

ABSTRACT

Animals may communicate potential information to conspecifics using stereotyped "discrete" calls and variable "graded" calls. However, animal vocal research often centers on identifying the number of call types in a repertoire rather than quantifying the amount of gradation. Here, fuzzy clustering was applied to the social call repertoire of a species with a complex communication system, the humpback whale (Megaptera novaeangliae). Of 26 call types, 6 were classified as discrete, 7 as graded, and 13 as intermediate. These results indicate that humpback whales have a graded call repertoire, and fuzzy clustering may be a useful approach to investigate this variability.


Subject(s)
Humpback Whale , Vocalization, Animal , Animals , Cluster Analysis , Sound Spectrography
9.
Mar Pollut Bull ; 154: 111072, 2020 May.
Article in English | MEDLINE | ID: mdl-32319903

ABSTRACT

Understanding the interactions between human activity in the ocean and marine mammals is a fundamental step to developing responsible mitigation measures and informing policy. Here, the response of migrating humpback whales to vessels towing seismic air gun arrays (on or off) was quantified as a reduction in their likelihood of socially interacting (joining together). Groups were significantly less likely to participate in a joining interaction in the presence of a vessel, regardless of whether or not the air guns were active. This reduction was especially pronounced in groups within a social environment that favored joining, that is, when singing whales or other groups were nearby. Seismic survey mitigation practices are designed primarily to prevent damage to whales' hearing from close-by sources. Here, we found potentially detrimental behavioral changes at much greater ranges, and much lower received levels, than those used for current mitigation recommendations.


Subject(s)
Firearms , Humpback Whale , Animals , Interpersonal Relations , Noise , Ships
10.
R Soc Open Sci ; 7(11): 201084, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33391798

ABSTRACT

The migration routes of wide-ranging species can be difficult to study, particularly at sea. In the western South Pacific, migratory routes of humpback whales between breeding and feeding areas are unclear. Male humpback whales sing a population-specific song, which can be used to match singers on migration to a breeding population. To investigate migratory routes and breeding area connections, passive acoustic recorders were deployed in the central New Zealand migratory corridor (2016); recorded humpback whale song was compared to song from the closest breeding populations of East Australia and New Caledonia (2015-2017). Singing northbound whales migrated past New Zealand from June to August via the east coast of the South Island and Cook Strait. Few song detections were made along the east coast of the North Island. New Zealand song matched New Caledonia song, suggesting a migratory destination, but connectivity to East Australia could not be ruled out. Two song types were present in New Zealand, illustrating the potential for easterly song transmission from East Australia to New Caledonia in this shared migratory corridor. This study enhances our understanding of western South Pacific humpback whale breeding population connectivity, and provides novel insights into the dynamic transmission of song culture.

11.
Proc Biol Sci ; 286(1917): 20192014, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31847766

ABSTRACT

Vocal communication systems have a set of rules that govern the arrangement of acoustic signals, broadly defined as 'syntax'. However, there is a limited understanding of potentially shared or analogous rules across vocal displays in different taxa. Recent work on songbirds has investigated syntax using network-based modelling. This technique quantifies features such as connectivity (adjacent signals in a sequence) and recurring patterns. Here, we apply network-based modelling to the complex, hierarchically structured songs of humpback whales (Megaptera novaeangliae) from east Australia. Given the song's annual evolving pattern and the cultural conformity of males within a population, network modelling captured the patterns of multiple song types over 13 consecutive years. Song arrangements in each year displayed clear 'small-world' network structure, characterized by clusters of highly connected sounds. Transitions between these connected sounds further suggested a combination of both structural stability and variability. Small-world network structure within humpback songs may facilitate the characteristic and persistent vocal learning observed. Similar small-world structures and transition patterns are found in several birdsong displays, indicating common syntactic patterns among vocal learning in multiple taxa. Understanding the syntactic rules governing vocal displays in multiple, independently evolving lineages may indicate what rules or structural features are important to the evolution of complex communication, including human language.


Subject(s)
Humpback Whale , Models, Theoretical , Vocalization, Animal , Animals , Australia , Learning , Male
12.
R Soc Open Sci ; 6(9): 190337, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31598287

ABSTRACT

Cultural transmission of behaviour is important in a wide variety of vertebrate taxa from birds to humans. Vocal traditions and vocal learning provide a strong foundation for studying culture and its transmission in both humans and cetaceans. Male humpback whales (Megaptera novaeangliae) perform complex, culturally transmitted song displays that can change both evolutionarily (through accumulations of small changes) or revolutionarily (where a population rapidly adopts a novel song). The degree of coordination and conformity underlying song revolutions makes their study of particular interest. Acoustic contact on migratory routes may provide a mechanism for cultural revolutions of song, yet these areas of contact remain uncertain. Here, we compared songs recorded from the Kermadec Islands, a recently discovered migratory stopover, to multiple South Pacific wintering grounds. Similarities in song themes from the Kermadec Islands and multiple wintering locations (from New Caledonia across to the Cook Islands) suggest a location allowing cultural transmission of song eastward across the South Pacific, active song learning (hybrid songs) and the potential for cultural convergence after acoustic isolation at the wintering grounds. As with the correlations in humans between genes, communication and migration, the migration patterns of humpback whales are written into their songs.

13.
J Acoust Soc Am ; 145(2): 869, 2019 02.
Article in English | MEDLINE | ID: mdl-30823805

ABSTRACT

Source level and frequency are important in determining how far an acoustic signal can travel. However, in some species these sound characteristics have been found to be biomechanically linked, and therefore cannot be modified independently to achieve optimal transmission. This study investigates the variability in source levels and their relationship with frequency in the songs of humpback whales (Megaptera novaeangliae). Songs were recorded off eastern Australia using a fixed hydrophone array deployed on the whales' migratory corridor. Singing whales were acoustically tracked. An empirical, frequency-dependent model was used to estimate transmission loss. Source levels and frequency were measured for 2408 song units from 19 singers. Source levels varied from 138 to 187 dB re 1 µPa at 1 m (root mean squared), while peak frequency ranged between 52 and 3877 Hz. Much of the variability in source levels was accounted for by differences between the unit types, with mean source levels for each unit type varying by up to 17 dB. Source levels were negatively correlated with peak frequency and decreased by 2.3 dB per octave. The negative correlation between source levels and frequency is consistent with the presence of an air-filled resonator in the whales' sound production system.

15.
Proc Biol Sci ; 285(1891)2018 11 21.
Article in English | MEDLINE | ID: mdl-30464066

ABSTRACT

Much evidence for non-human culture comes from vocally learned displays, such as the vocal dialects and song displays of birds and cetaceans. While many oscine birds use song complexity to assess male fitness, the role of complexity in humpback whale (Megaptera novaeangliae) song is uncertain owing to population-wide conformity to one song pattern. Although songs change gradually each year, the eastern Australian population also completely replaces their song every few years in cultural 'revolutions'. Revolutions involve learning large amounts of novel material introduced from the Western Australian population. We examined two measures of song structure, complexity and entropy, in the eastern Australian population over 13 consecutive years. These measures aimed to identify the role of complexity and information content in the vocal learning processes of humpback whales. Complexity was quantified at two hierarchical levels: the entire sequence of individual sound 'units' and the stereotyped arrangements of units which comprise a 'theme'. Complexity increased as songs evolved over time but decreased when revolutions occurred. No correlation between complexity and entropy estimates suggests that changes to complexity may represent embellishment to the song which could allow males to stand out amidst population-wide conformity. The consistent reduction in complexity during song revolutions suggests a potential limit to the social learning capacity of novel material in humpback whales.


Subject(s)
Humpback Whale/physiology , Vocalization, Animal/physiology , Animals , Australia , Culture , Learning/physiology
16.
Mar Pollut Bull ; 133: 506-516, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041344

ABSTRACT

The behavioural responses of migrating humpback whales to an air gun, a small clustered seismic array and a commercial array were used to develop a dose-response model, accounting for the presence of the vessel, array towpath relative to the migration and social and environmental parameters. Whale groups were more likely to show an avoidance response (increasing their distance from the source) when the received sound exposure level was over 130 dB re 1 µPa2·s and they were within 4 km of the source. The 50% probability of response occurred where received levels were 150-155 dB re 1 µPa2·s and they were within 2.5 km of the source. A small number of whales moving rapidly close to the source vessel did not exhibit an avoidance response at the highest received levels (160-170 dB re 1 µPa2·s) meaning it was not possible to estimate the maximum response threshold.


Subject(s)
Humpback Whale/physiology , Models, Biological , Noise/adverse effects , Animal Migration , Animals , Avoidance Learning , Female , Male
17.
J Acoust Soc Am ; 143(2): 980, 2018 02.
Article in English | MEDLINE | ID: mdl-29495685

ABSTRACT

Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.

18.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29237853

ABSTRACT

Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales (Megaptera novaeangliae) to a 3130 in3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel (n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls, the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa2s.


Subject(s)
Animal Migration , Humpback Whale/physiology , Noise/adverse effects , Animals , Australia , Female , Male
19.
J Acoust Soc Am ; 142(4): 1943, 2017 10.
Article in English | MEDLINE | ID: mdl-29092588

ABSTRACT

Classification of vocal signals can be undertaken using a wide variety of qualitative and quantitative techniques. Using east Australian humpback whale song from 2002 to 2014, a subset of vocal signals was acoustically measured and then classified using a Self-Organizing Map (SOM). The SOM created (1) an acoustic dictionary of units representing the song's repertoire, and (2) Cartesian distance measurements among all unit types (SOM nodes). Utilizing the SOM dictionary as a guide, additional song recordings from east Australia were rapidly (manually) transcribed. To assess the similarity in song sequences, the Cartesian distance output from the SOM was applied in Levenshtein distance similarity analyses as a weighting factor to better incorporate unit similarity in the calculation (previously a qualitative process). SOMs provide a more robust and repeatable means of categorizing acoustic signals along with a clear quantitative measurement of sound type similarity based on acoustic features. This method can be utilized for a wide variety of acoustic databases especially those containing very large datasets and can be applied across the vocalization research community to help address concerns surrounding inconsistency in manual classification.

20.
J Acoust Soc Am ; 142(3): 1611, 2017 09.
Article in English | MEDLINE | ID: mdl-28964095

ABSTRACT

Acoustic surveys of vocal animals can have significant advantages over visual surveys, particularly for marine mammals. For acoustic density estimates to be viable, however, the vocal output of the animals surveyed needs to be determined under a range of conditions and shown to be a robust predictor of abundance. In this study, the songs of humpback whales, one of the most vocal and best studied species of marine mammals, were tested as predictors of abundance. Two acoustic metrics, the number of singing whales and amount of songs produced, were compared with the number of whales seen traversing a study site on the eastern coast of Australia over an 18 year period. Although there were predictive relationships between both metrics and numbers of passing whales, these relationships changed significantly as the population grew in size. The proportion of passing whales that sang decreased as the population increased. Singing in humpback whales, therefore, is a poor predictor even of relative abundance and illustrates the caution required when developing acoustic survey techniques particularly when using social vocalizations.


Subject(s)
Humpback Whale , Vocalization, Animal , Acoustics , Animals , Australia , Population Density , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...