Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542395

ABSTRACT

Mitochondria are involved in multiple aspects of neurodevelopmental processes and play a major role in the pathogenetic mechanisms leading to neuro-degenerative diseases. Fragile-X-related disorders (FXDs) are genetic conditions that occur due to the dynamic expansion of CGG repeats of the FMR1 gene encoding for the RNA-binding protein FMRP, particularly expressed in the brain. This gene expansion can lead to premutation (PM, 56-200 CGGs), full mutation (FM, >200 CGGs), or unmethylated FM (UFM), resulting in neurodegeneration, neurodevelopmental disorders, or no apparent intellectual disability, respectively. To investigate the mitochondrial mechanisms that are involved in the FXD patients, we analyzed mitochondrial morphology and bioenergetics in fibroblasts derived from patients. Donut-shaped mitochondrial morphology and excessive synthesis of critical mitochondrial proteins were detected in FM, PM, and UFM cells. Analysis of mitochondrial oxidative phosphorylation in situ reveals lower respiration in PM fibroblasts. Importantly, mitochondrial permeability transition-dependent apoptosis is sensitized to reactive oxygen species in FM, PM, and UFM models. This study elucidated the mitochondrial mechanisms that are involved in the FXD phenotypes, and indicated altered mitochondrial function and morphology. Importantly, a sensitization to permeability transition and apoptosis was revealed in FXD cells. Overall, our data suggest that mitochondria are novel drug targets to relieve the FXD symptoms.


Subject(s)
Fragile X Syndrome , Intellectual Disability , Mitochondrial Diseases , Humans , Fragile X Syndrome/metabolism , Fragile X Mental Retardation Protein/genetics , Intellectual Disability/genetics , Cell Death/genetics , Mitochondrial Diseases/genetics , Mutation , Trinucleotide Repeat Expansion
2.
Antioxidants (Basel) ; 12(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37107196

ABSTRACT

This study explores the photoprotective effects of rutin, a bioflavonoid found in some vegetables and fruits, against UVA-induced damage in human skin fibroblasts. Our results show that rutin increases cell viability and reduces the high levels of ROS generated by photo-oxidative stress (1 and 2 h of UVA exposure). These effects are related to rutin's ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 signaling pathway results in an increase in reduced glutathione and Bcl2/Bax ratio, and the subsequent protection of mitochondrial respiratory capacity. These results demonstrate how rutin may play a potentially cytoprotective role against UVA-induced skin damage through a purely antiapoptotic mechanism.

3.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899894

ABSTRACT

Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.


Subject(s)
Fragile X Syndrome , Neural Stem Cells , Humans , Amyloid beta-Protein Precursor/metabolism , Fragile X Syndrome/genetics , Neural Stem Cells/metabolism , Neurons/metabolism
4.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233159

ABSTRACT

FMRP is an RNA-binding protein that represses the translation of specific mRNAs. In neurons, its depletion determines the exaggerated translation of mRNAs leading to dendritic and axonal aberrant development, two peculiar features of Fragile X syndrome patients. However, how FMRP binds to translational machinery to regulate the translation of its mRNA targets is not yet fully understood. Here, we show that FMRP localizes on translational machinery by interacting with the ribosomal binding protein, Receptor for Activated C Kinase 1 (RACK1). The binding of FMRP to RACK1 removes the translational repressive activity of FMRP and promotes the translation of PSD-95 mRNA, one specific target of FMRP. This binding also results in a reduction in the level of FMRP phosphorylation. We also find that the morphological abnormalities induced by Fmr1 siRNA in cortical neurons are rescued by the overexpression of a mutant form of RACK1 that cannot bind ribosomes. Thus, these results provide a new mechanism underlying FMRP activity that contributes to altered development in FXS. Moreover, these data confirm the role of ribosomal RACK1 as a ribosomal scaffold for RNA binding proteins.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Receptors for Activated C Kinase , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Humans , Neoplasm Proteins/metabolism , Neuronal Plasticity , RNA, Messenger/metabolism , RNA, Small Interfering , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism
5.
Genes (Basel) ; 13(7)2022 06 27.
Article in English | MEDLINE | ID: mdl-35885943

ABSTRACT

Craniosynostosis are a heterogeneous group of genetic conditions characterized by the premature fusion of the skull bones. The most common forms of craniosynostosis are Crouzon, Apert and Pfeiffer syndromes. They differ from each other in various additional clinical manifestations, e.g., syndactyly is typical of Apert and rare in Pfeiffer syndrome. Their inheritance is autosomal dominant with incomplete penetrance and one of the main genes responsible for these syndromes is FGFR2, mapped on chromosome 10, encoding fibroblast growth factor receptor 2. We report an FGFR2 gene variant in a mother and daughter who present with different clinical features of Crouzon syndrome. The daughter is more severely affected than her mother, as also verified by a careful study of the face and oral cavity. The c.1032G>A transition in exon 8, already reported as a synonymous p.Ala344 = variant in Crouzon patients, also activates a new donor splice site leading to the loss of 51 nucleotides and the in-frame removal of 17 amino acids. We observed lower FGFR2 transcriptional and translational levels in the daughter compared to the mother and healthy controls. A preliminary functional assay and a molecular modeling added further details to explain the discordant phenotype of the two patients.


Subject(s)
Acrocephalosyndactylia , Craniosynostoses , Acrocephalosyndactylia/genetics , Craniosynostoses/genetics , Female , Humans , Mothers , Phenotype , Receptor, Fibroblast Growth Factor, Type 2/genetics
6.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628235

ABSTRACT

A dynamic mutation in exon 1 of the FMR1 gene causes Fragile X-related Disorders (FXDs), due to the expansion of an unstable CGG repeat sequence. Based on the CGG sequence size, two types of FMR1 alleles are possible: "premutation" (PM, with 56-200 CGGs) and "full mutation" (FM, with >200 triplets). Premutated females are at risk of transmitting a FM allele that, when methylated, epigenetically silences FMR1 and causes Fragile X syndrome (FXS), a very common form of inherited intellectual disability (ID). Expansions events of the CGG sequence are predominant over contractions and are responsible for meiotic and mitotic instability. The CGG repeat usually includes one or more AGG interspersed triplets that influence allele stability and the risk of transmitting FM to children through maternal meiosis. A unique mechanism responsible for repeat instability has not been identified, but several processes are under investigations using cellular and animal models. The formation of unusual secondary DNA structures at the expanded repeats are likely to occur and contribute to the CGG expansion. This review will focus on the current knowledge about CGG repeat instability addressing the CGG sequence expands.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Alleles , DNA , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans , Mutation
7.
Genes (Basel) ; 12(12)2021 11 27.
Article in English | MEDLINE | ID: mdl-34946857

ABSTRACT

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism caused by the instability of a CGG trinucleotide repeat in exon 1 of the FMR1 gene. The co-occurrence of FXS with other genetic disorders has only been occasionally reported. Here, we describe three independent cases of FXS co-segregation with three different genetic conditions, consisting of Duchenne muscular dystrophy (DMD), PPP2R5D--related neurodevelopmental disorder, and 2p25.3 deletion. The co-occurrence of DMD and FXS has been reported only once in a young boy, while in an independent family two affected boys were described, the elder diagnosed with FXS and the younger with DMD. This represents the second case in which both conditions coexist in a 5-year-old boy, inherited from his heterozygous mother. The next double diagnosis had never been reported before: through exome sequencing, a girl with FXS who was of 7 years of age with macrocephaly and severe psychomotor delay was found to carry a de novo variant in the PPP2R5D gene. Finally, a maternally inherited 2p25.3 deletion associated with a decreased level of the MYT1L transcript, only in the patient, was observed in a 33-year-old FXS male with severe seizures compared to his mother and two sex- and age-matched controls. All of these patients represent very rare instances of genetic conditions with clinical features that can be modified by FXS and vice versa.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/pathology , Megalencephaly/pathology , Muscular Dystrophy, Duchenne/pathology , Mutation , Nerve Tissue Proteins/genetics , Protein Phosphatase 2/genetics , Transcription Factors/genetics , Adult , Child , Child, Preschool , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Male , Megalencephaly/genetics , Megalencephaly/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Exome Sequencing/methods
8.
Biomolecules ; 11(2)2021 02 16.
Article in English | MEDLINE | ID: mdl-33669384

ABSTRACT

Among the inherited causes of intellectual disability and autism, Fragile X syndrome (FXS) is the most frequent form, for which there is currently no cure. In most FXS patients, the FMR1 gene is epigenetically inactivated following the expansion over 200 triplets of a CGG repeat (FM: full mutation). FMR1 encodes the Fragile X Mental Retardation Protein (FMRP), which binds several mRNAs, mainly in the brain. When the FM becomes methylated at 10-12 weeks of gestation, the FMR1 gene is transcriptionally silent. The molecular mechanisms involved in the epigenetic silencing are not fully elucidated. Among FXS families, there is a rare occurrence of males carrying a FM, which remains active because it is not methylated, thus ensuring enough FMRPs to allow for an intellectual development within normal range. Which mechanisms are responsible for sparing these individuals from being affected by FXS? In order to answer this critical question, which may have possible implications for FXS therapy, several potential epigenetic mechanisms have been described. Here, we focus on current knowledge about the role of DNA methylation and other epigenetic modifications in FMR1 gene silencing.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy , Gene Silencing , Animals , Epigenomics , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Mutation , Phenotype , Promoter Regions, Genetic , Transcription, Genetic , Trinucleotide Repeat Expansion
10.
Genes (Basel) ; 11(3)2020 02 26.
Article in English | MEDLINE | ID: mdl-32111011

ABSTRACT

Fragile X syndrome (FXS) is mostly due to the expansion and subsequent methylation of a polymorphic CGG repeat in the 5' UTR of the FMR1 gene. Full mutation alleles (FM) have more than 200 repeats and result in FMR1 gene silencing and FXS. FMs arise from maternal premutations (PM) that have 56-200 CGGs; contractions of a maternal PM or FM are rare. Here, we describe two unaffected boys in two independent FXS families who inherited a non-mosaic allele in the normal and intermediate range, respectively, from their mothers who are carriers of an expanded CGG allele. The first boy inherited a 51 CGG allele (without AGG interruptions) from his mother, who carries a PM allele with 72 CGGs. The other boy inherited from his FM mother an unusual allele with 19 CGGs resulting from a deletion, removing 85 bp upstream of the CGG repeat. Given that transcription of the deleted allele was found to be preserved, we assume that the binding sites for FMR1 transcription factors are excluded from the deletion. Such unusual cases resulting in non-mosaic reduction of maternal CGG expansions may help to clarify the molecular mechanisms underlying the instability of the FMR1 gene.


Subject(s)
DNA Methylation/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion/genetics , 5' Untranslated Regions/genetics , Adult , Aged , Alleles , Child , Female , Fragile X Syndrome/pathology , Gene Silencing , Heterozygote , Humans , Male , Mutation/genetics
11.
Hum Genet ; 139(2): 227-245, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31919630

ABSTRACT

Fragile X-related disorders are due to a dynamic mutation of the CGG repeat at the 5' UTR of the FMR1 gene, coding for the RNA-binding protein FMRP. As the CGG sequence expands from premutation (PM, 56-200 CGGs) to full mutation (> 200 CGGs), FMRP synthesis decreases until it is practically abolished in fragile X syndrome (FXS) patients, mainly due to FMR1 methylation. Cells from rare individuals with no intellectual disability and carriers of an unmethylated full mutation (UFM) produce slightly elevated levels of FMR1-mRNA and relatively low levels of FMRP, like in PM carriers. With the aim of clarifying how UFM cells differ from CTRL and FXS cells, a comparative proteomic approach was undertaken, from which emerged an overexpression of SOD2 in UFM cells, also confirmed in PM but not in FXS. The SOD2-mRNA bound to FMRP in UFM more than in the other cell types. The high SOD2 levels in UFM and PM cells correlated with lower levels of superoxide and reactive oxygen species (ROS), and with morphological anomalies and depolarization of the mitochondrial membrane detected through confocal microscopy. The same effect was observed in CTRL and FXS after treatment with MC2791, causing SOD2 overexpression. These mitochondrial phenotypes reverted after knock-down with siRNA against SOD2-mRNA and FMR1-mRNA in UFM and PM. Overall, these data suggest that in PM and UFM carriers, which have high levels of FMR1 transcription and may develop FXTAS, SOD2 overexpression helps to maintain low levels of both superoxide and ROS with signs of mitochondrial degradation.


Subject(s)
Ataxia/pathology , DNA Methylation , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/pathology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mutation , Proteome/analysis , Tremor/pathology , Ataxia/genetics , Ataxia/metabolism , Case-Control Studies , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Male , Mitochondria/metabolism , Mitochondrial Proteins/genetics , RNA, Small Interfering/genetics , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tremor/genetics , Tremor/metabolism
12.
Eur J Hum Genet ; 28(5): 567-575, 2020 05.
Article in English | MEDLINE | ID: mdl-31804632

ABSTRACT

Fragile X syndrome (FXS) is a very frequent cause of inherited intellectual disability (ID) and autism. Most FXS patients have an expansion over 200 repeats of (CGG)n sequence ("full mutation" (FM)) located in the 5'UTR of the FMR1 gene, resulting in local DNA methylation (methylated "full mutation" (MFM)) and epigenetic silencing. The absence of the FMRP protein is responsible for the clinical phenotype of FXS. FM arises from a smaller maternal allele with 56-200 CGG repeats ("premutation" (PM)) during maternal meiosis. Carriers of PM alleles, which are typically unmethylated, can manifest other clinical features (primary ovarian insufficiency (POI) or FXS-associated tremor-ataxia syndrome (FXTAS)), known as fragile X-related disorders. In FXS families, rare males who have inherited an unmethylated "full mutation" (UFM) have been described. These individuals produce enough FMRP to allow normal intellectual functioning. Here we report the rare case of three sisters with a completely methylated PM of around 140 CGGs and detail their neuropsychological function. X inactivation analysis confirmed that the three sisters have a random inactivation of the X chromosome, suggesting that the PM allele is always methylated also when residing on the active X. We propose that in exceptional cases, just as the FM may be unmethylated, also a PM allele may be fully methylated. To our knowledge, females with a methylated PM allele and a mild impairment have reported only once. The study of these atypical individuals demonstrates that the size of the CGG expansion is not as tightly coupled to methylation as previously thought.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion , X Chromosome Inactivation , Adolescent , Adult , Child , Female , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/pathology , Humans , Male , Pedigree , Phenotype
13.
Genes (Basel) ; 7(8)2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27548224

ABSTRACT

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG expansion over 200 repeats (full mutation, FM) at the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene and subsequent DNA methylation of the promoter region, accompanied by additional epigenetic histone modifications that result in a block of transcription and absence of the fragile X mental retardation protein (FMRP). The lack of FMRP, involved in multiple aspects of mRNA metabolism in the brain, is thought to be the direct cause of the FXS phenotype. Restoration of FMR1 transcription and FMRP production can be obtained in vitro by treating FXS lymphoblastoid cell lines with the demethylating agent 5-azadeoxycytidine, demonstrating that DNA methylation is key to FMR1 inactivation. This concept is strengthened by the existence of rare male carriers of a FM, who are unable to methylate the FMR1 promoter. These individuals produce limited amounts of FMRP and are of normal intelligence. Their inability to methylate the FMR1 promoter, whose cause is not yet fully elucidated, rescues them from manifesting the FXS. These observations demonstrate that a therapeutic approach to FXS based on the pharmacological reactivation of the FMR1 gene is conceptually tenable and worthy of being further pursued.

14.
Article in English | MEDLINE | ID: mdl-28232951

ABSTRACT

OBJECTIVE: Fragile X syndrome (FXS) and tuberous sclerosis (TSC) are genetic disorders that result in intellectual disability and an increased prevalence of autism spectrum disorders (ASD). While the clinical presentation of each disorder is distinct, the molecular causes are linked to a disruption in the mTORC1 (mammalian Target of Rapamycin Complex 1) and ERK1/2 (Extracellular signal-Regulated Kinase) signaling pathways. METHODS: We assessed the clinical and molecular characteristics of an individual seen at the UC Davis MIND Institute with a diagnosis of FXS and TSC. Clinical evaluation of physical, behavioral, and cognitive impairments were performed. Additionally, total and phosphorylated proteins along the mTORC1 and ERK1/2 pathways were measured in primary fibroblast cell lines from the proband. RESULTS: In this case the phenotypic effects that result in a human with both FXS and TSC are shown to be severe. Changes in mTORC1 and ERK1/2 signaling proteins and global protein synthesis were not found to be noticeably different between four cohorts (typically developing, FMR1 full mutation, FMR1 full mutation and TSC1 loss of function mutation, and TSC1 loss of function mutation); however cohort sizes prevented stringent comparisons. CONCLUSION: It has previously been suggested that disruption of the mTORC1 pathway was reciprocal in TSC and FXS double knock-out mouse models so that the regulation of these pathways were more similar to wild-type mice compared to mice harboring a Fmr1-/y or Tsc2-/+ mutation alone. However, in this first reported case of a human with a diagnosis of both FXS and TSC, substantial clinical impairments, as a result of these two disorders were observed. Differences in the mTORC and ERK1/2 pathways were not clearly established when compared between individuals with either disorder, or both.

SELECTION OF CITATIONS
SEARCH DETAIL
...