Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39315908

ABSTRACT

Inertial Confinement Fusion and Magnetic Confinement Fusion (ICF and MCF) follow different paths toward goals that are largely common. In this paper, the claim is made that progress can be accelerated by learning from each other across the two fields. Examples of successful cross-community knowledge transfer are presented that highlight the gains from working together, specifically in the areas of high-resolution x-ray imaging spectroscopy and neutron spectrometry. Opportunities for near- and mid-term collaboration are identified, including in chemical vapor deposition diamond detector technology, using gamma rays to monitor fusion gain, handling neutron-induced backgrounds, developing radiation hard technology, and collecting fundamental supporting data needed for diagnostic analysis. Fusion research is rapidly moving into the igniting and burning regimes, posing new opportunities and challenges for ICF and MCF diagnostics. This includes new physics to probe, such as alpha heating; increasingly harsher environmental conditions; and (in the slightly longer term) the need for new plant monitoring diagnostics. Substantial overlap is expected in all of these emerging areas, where joint development across the two subfields as well as between public and private researchers can be expected to speed up advancement for all.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39177460

ABSTRACT

We present a fully relativistic analytical model for calculating synthetic spectra from beam-target fusion reactions. When the target particle is assumed at rest, Monte Carlo sampling of reactant velocities can be avoided, and spectrum computations are considerably faster. A fully analytical treatment additionally gives more insight into the spectrum formation. The fully relativistic formulation now makes it possible to handle massless particles in the model, for example from one-step gamma-ray reactions, and the results are corroborated by simulations from established codes.

3.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093115

ABSTRACT

A new 14 MeV neutron spectrometer utilizing the magnetic proton recoil (MPR) technique is under development for the SPARC tokamak. This instrument measures neutrons by converting them into protons, whose momenta are subsequently analyzed using a series of magnets before detection by an array of scintillators known as the hodoscope. In this work, we explore various solutions for the hodoscope detectors through laboratory tests with radioactive sources and simulations. We present findings on light collection and pulse shape discrimination based on detector types, as well as optimal solutions for photo-detectors studying the differences between SiPM and PMT. Our results also led to the determination of a better optimized design for the hodoscope detectors, consisting of a 0.7 cm width and a 13 cm length EJ276D scintillation rod.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39101791

ABSTRACT

The ITER Radial Gamma-Ray Spectrometer (RGRS) consists of three gamma-ray detectors observing the plasma through three collimated, coplanar, radial lines of sight (LoS). The system was initially designed to monitor the runaway electron emission and the alpha-particle density profile [Nocente et al., Nucl. Fusion 57, 076016 (2017)]. This work presents a novel technique for measuring the fusion power during D-T operation using the RGRS. This method is based on the absolute measurement of the 17 MeV fusion gamma-rays and a semi-analytical computation of their transport from the plasma source to the detectors. This approach was initially developed and tested at JET during the second D-T campaign (DTE2) on a single LoS diagnostic [Dal Molin et al., Phys. Rev. Lett. (submitted) (2024); Rebai et al., Phys. Rev. C (submitted) (2024); and Marcer et al., Nucl. Fusion (unpublished) (2024)]. This work exploits the multiple LoS of the RGRS to create a combined virtual diagnostic whose detected fraction of the total plasma emission is less affected by variations in the plasma emission profile, reducing systematic uncertainties on the estimated total emission, compared to the individual detectors.

5.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087810

ABSTRACT

A COmpact Spectrometer for Measurements Of Neutrons at the ASDEX Upgrade Tokamak (COSMONAUT) has been developed for spectroscopy measurements of the 2.45 MeV neutron emission from deuterium plasmas at the ASDEX Upgrade. The instrument is based on a CLYC-7 inorganic scintillator, whereby the detection of fusion neutrons occurs via their interaction with 35Cl nuclei in the detector crystal, leading to a peak in the detector response function and providing excellent neutron/gamma-ray discrimination capabilities. The diagnostics is installed along a radial line of sight and makes use of a digital system to record time resolved data for the whole duration of the discharge. Measurements in ASDEX Upgrade plasmas with neutral beam injection have been carried out and are successfully interpreted using state-of-the-art modeling codes. Next step applications of the diagnostics are in experiments aimed at generating energetic particles by ion cyclotron resonance heating schemes. In these scenarios, COSMONAUT will provide unique information on the acceleration of deuterons beyond the beam injection energy and on their confinement, for comparison with modeling.

6.
Phys Rev Lett ; 133(5): 055102, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39159102

ABSTRACT

At present, magnetic confinement fusion devices rely solely on absolute neutron counting as a direct way of measuring fusion power. Absolute counting of deuterium-tritium gamma rays could provide the secondary neutron-independent technique required for the validation of scientific results and as a licensing tool for future power plants. However, this approach necessitates an accurate determination of the gamma-ray-to-neutron branching ratio. The gamma-ray-to-neutron branching ratio for the deuterium-tritium reaction ^{3}H(^{2}H,γ)^{5}He/^{3}H(^{2}H,n)^{4}He was determined in magnetic confinement fusion plasmas at the Joint European Torus in predominantly deuterium beam heated plasmas. The branching ratio was found to be equal to (2.4±0.5)×10^{-5} over the deuterium energy range of (80±20) keV. This accurate determination of the deuterium-tritium branching ratio paves the way for a direct and neutron-independent measurement of fusion power in magnetic confinement fusion reactors, based on the absolute counting of deuterium-tritium gamma rays.

7.
Rev Sci Instrum ; 94(1): 013501, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725552

ABSTRACT

The only method for assessing the fusion power throughput of a deuterium-tritium (DT) reactor presently relies on determining the absolute number of 14 MeV neutrons produced in the DT plasma. An independent method, developed and investigated during the recent DT campaign at the Joint European Torus, is based on the absolute counting of 17 MeV gamma rays produced by the competing T(D, γ)5He reaction that features a very weak branching ratio (about 3-6 × 10-6) when compared to the main T(D, n)4He reaction. The state-of-the-art spectrometer used for gamma-ray measurements in magnetic confinement fusion plasmas is LaBr3(Ce) scintillator detectors, although they require significant neutron shielding to extract a relatively weak gamma-ray signal from a much more abundant neutron field. A better approach relies on a gamma-ray detector that is intrinsically insensitive to neutrons. We have advanced the design of a gamma-ray counter based on the Cherenkov effect for gamma-rays whose energy exceeds 11 MeV, optimized to work in the neutron-rich environment of a steady-state, magnetically confined fusion plasma device. The gamma-rays interact with an aluminum window and extract electrons that move into the radiator emitting photons via the Cherenkov effect. Since the Cherenkov light consists of few photons (25 on average) in the far UV band (100-200 nm), a pre-amplifier is required to transport the photons to the neutron-shielded location, which may be a few meters away, where the readout elements of the detector, either a silicon or standard photomultiplier tube, are placed. The present work focuses on the development of a scintillating GEM (Gas Electron Multiplier) based pre-amplifier that acts as a Cherenkov photon pre-amplifier and wavelength shifter. This paper presents the result of a set of Garfield++ simulations developed to find the optimal GEM working parameters. A photon gain of 100 is obtained by biasing a single GEM foil to 1 kV.

8.
Rev Sci Instrum ; 93(11): 113501, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461431

ABSTRACT

The EAST plasmas heated with deuterium neutral beam injection and ion cyclotron resonance heating (ICRH) have been simulated by the TRANSP code. The analysis has been conducted using the full wave solver TORIC5, the radio frequency (RF)-kick operator, and NUBEAM to model the RF heating effects on fast ion velocity distribution. In this work, we present several simulated results compared with experiments for high power EAST scenarios, indicating that the interactions between ICRH and fast ions can significantly accelerate fast ions, which are confirmed by the increased neutron yield and broadened neutron emission spectrum measurements.

9.
Rev Sci Instrum ; 93(11): 113512, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461481

ABSTRACT

Dedicated nuclear diagnostics have been designed, developed, and built within EUROFUSION enhancement programs in the last ten years for installation at the Joint European Torus and capable of operation in high power Deuterium-Tritium (DT) plasmas. The recent DT Experiment campaign, called DTE2, has been successfully carried out in the second half of 2021 and provides a unique opportunity to evaluate the performance of the new nuclear diagnostics and for an understanding of their behavior in the record high 14 MeV neutron yields (up to 4.7 × 1018 n/s) and total number of neutrons (up to 2 × 1019 n) achieved on a tokamak. In this work, we will focus on the 14 MeV high resolution neutron spectrometers based on artificial diamonds which, for the first time, have extensively been used to measure 14 MeV DT neutron spectra with unprecedented energy resolution (Full Width at Half Maximum of ≈1% at 14 MeV). The work will describe their long-term stability and operation over the DTE2 campaign as well as their performance as neutron spectrometers in terms of achieved energy resolution and high rate capability. This important experience will be used to outline the concept of a spectroscopic neutron camera for the SPARC tokamak. The proposed neutron camera will be the first one to feature the dual capability to measure (i) the 2.5 and 14 MeV neutron emissivity profile via the conventional neutron detectors based on liquid or plastics scintillators and (ii) the 14 MeV neutron spectral emission via the use of high-resolution diamond-based spectrometers. The new opportunities opened by the spectroscopic neutron camera to measure plasma parameters will be discussed.

10.
Rev Sci Instrum ; 93(11): 113524, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461541

ABSTRACT

The Gamma Ray Imager (GRI) is a pinhole camera providing 2D imaging of MeV hard x-ray (HXR) bremsstrahlung emission from runaway electrons (REs) over the poloidal cross section of the DIII-D tokamak. We report a series of upgrades to the GRI expanding the access to RE scenarios from the diagnosis of a trace amount of REs to high flux HXR measurements during the RE plateau phase. We present the implementation of novel gamma ray detectors based on LYSO and YAP crystals coupled to multi-pixel photon counters, enabling a count rate in excess of 1 MHz. Finally, we highlight new insights into the RE physics discovered during the current quench and RE plateau phase experiments as the result of these upgrades.

11.
Rev Sci Instrum ; 93(9): 093515, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182493

ABSTRACT

The Joint European Torus (JET) is the only tokamak in the world able to operate in Deuterium-Tritium (DT) plasmas. A successful DT experimental campaign, the DTE2, has recently been carried out, providing unique opportunities for studying both physics and technological aspects. In particular, it allowed us to investigate and benchmark the solutions adopted to attenuate the significant 14 MeV neutron flux, needed to enable high-resolution gamma-ray spectroscopy measurements on a tokamak. While in inertial confinement experiments, gamma-rays and neutrons are discriminated through time-of-flight techniques; in magnetic confinement experiments, the neutron attenuators are a key element to allow gamma-ray measurements in order to reestablish the 1 × 105 to 1 background to signal ratio. In this paper, the role of the reference neutron attenuators at JET, based on LiH, has been analyzed and described.

12.
Rev Sci Instrum ; 93(9): 093525, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182521

ABSTRACT

The most performant deuterium-tritium (DT) plasma discharges realized by the Joint European Torus (JET) tokamak in the recent DT campaign have produced neutron yields on the order of 1018 n/s. At such high neutron yields, gamma-ray spectroscopy measurements with scintillators are challenging as events from the neutron-induced background often dominate over the signal, leading to a significant fraction of pileup events and instability of the photodetector gain along with the consequent degradation of the reconstructed spectrum. Here, we describe the solutions adopted for the tangential lanthanum bromide spectrometer installed at JET. A data acquisition system with free streaming mode digitization capabilities for the entire duration of the discharge has been used to solve dead-time related issues and a data reconstruction code with pileup recovery and photodetector gain drift restoration has been implemented for off-line analysis of the data. This work focuses on the acquired data storage and parsing, with a detailed explanation of the pileup recovery and gain drift restoration algorithms.

13.
Rev Sci Instrum ; 93(9): 093520, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182523

ABSTRACT

A new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program. These have been tested for the first time in DTE2 and a concise overview is provided here. Confined alpha particle measurements by gamma-ray spectroscopy were successfully demonstrated, albeit with limitations at neutron rates higher than some 1017 n/s. High resolution neutron spectroscopy measurements with the magnetic proton recoil instrument were complemented by novel data from a set of synthetic diamond detectors, which enabled studies of the supra-thermal contributions to the neutron emission. In the area of escaping fast ion diagnostics, a lost fast ion detector and a set of Faraday cups made it possible to determine information on the velocity space and poloidal distribution of the lost alpha particles for the first time. This extensive set of data provides unique information for fundamental physics studies and validation of the numerical models, which are key to inform the physics and scenarios of ITER.

14.
Nat Commun ; 13(1): 3941, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35803936

ABSTRACT

Long-pulse operation of a self-sustained fusion reactor using toroidal magnetic containment requires control over the content of alpha particles produced by D-T fusion reactions. On the one hand, MeV-class alpha particles must stay confined to heat the plasma. On the other hand, decelerated helium ash must be expelled before diluting the fusion fuel. Here, we report results of kinetic-magnetohydrodynamic hybrid simulations of a large tokamak plasma that confirm the existence of a parameter window where such energy-selective confinement can be accomplished by exploiting internal relaxation events known as sawtooth crashes. The physical picture - a synergy between magnetic geometry, optimal crash duration and rapid particle motion - is completed by clarifying the role of magnetic drifts. Besides causing asymmetry between co- and counter-going particle populations, magnetic drifts determine the size of the confinement window by dictating where and how much reconnection occurs in particle orbit topology.

15.
Rev Sci Instrum ; 92(5): 053529, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243238

ABSTRACT

The Joint European Torus (JET) gamma-ray camera has been recently upgraded with the installation of new gamma-ray detectors, based on LaBr3(Ce) scintillation crystals, which add spectroscopic capability to the existing system allowing measurements with good energy resolution (5% at 0.622 MeV), a dynamic range from hundreds of keV up to about 30 MeV, and high counting rate capabilities of MCps. First gamma-ray measurements during the C38 campaign of the JET have been successfully carried out, in particular, in D-3He plasmas from three-ion ion cyclotron resonance heating experiments, where the detection of 16.4 MeV γ-rays from D + 3He → γ + 5Li reactions with the gamma-ray camera upgrade allowed determining the spatial profile of alpha particles born in D + 3He fusion reactions.

16.
Rev Sci Instrum ; 92(4): 043506, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243369

ABSTRACT

Stilbene crystal detectors are widely used as fast neutron measurement tools based on recoil proton detection, such as liquid scintillators. A compact stilbene crystal neutron spectrometer (CSCNS) has been installed at the Experimental Advanced Superconducting Tokamak (EAST) to obtain information on fuel ions produced in the plasma core because of its merits of good n/γ discrimination capability, high detection efficiency, and fast response. For the first time, CSCNS has been used for neutron emission spectroscopy measurements in EAST plasmas with neutral beam injection (NBI) heating. The CSCNS has the same horizontal line of sight as the time-of-flight enhanced diagnostics neutron spectrometer. Under NBI heating scenarios, the time trace of the neutron yield monitored by the CSCNS is similar to the one monitored by a standard 235U fission chamber. The experimental pulse height spectra are also similar to the simulated ones generated by folding the simulated neutron energy spectrum with the detector response functions. These results demonstrate the capability of the CSCNS for neutron diagnostics and the study of fast-ion physics in EAST.

17.
Rev Sci Instrum ; 92(4): 043526, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243421

ABSTRACT

Fast ions in fusion plasmas often leave characteristic signatures in the plasma neutron emission. Measurements of this emission are subject to the phase-space sensitivity of the diagnostic, which can be mapped using weight functions. In this paper, we present orbit weight functions for the TOFOR and NE213 neutron diagnostics at the Joint European Torus, mapping their phase-space sensitivity in 3D orbit space. Both diagnostics are highly sensitive to fast ions that spend a relatively large fraction of their orbit transit times inside the viewing cone of the diagnostic. For most neutron energies, TOFOR is found to be relatively sensitive to potato orbits and heavily localized counter-passing orbits, as well as trapped orbits whose "banana tips" are inside the viewing cone of TOFOR. For the NE213-scintillator, the sensitivity is found to be relatively high for stagnation orbits.

18.
Rev Sci Instrum ; 92(4): 043537, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243441

ABSTRACT

A new tangential gamma-ray spectrometer has been developed for fast ion measurements in deuterium and deuterium-tritium plasmas of the Joint European Torus (JET). The instrument is based on a LaBr3 crystal with a photo-multiplier tube and replaces a pre-existing bismuth germanate detector, providing enhanced energy resolution and a counting rate capability in the MHz range. The line of sight is equipped with a LiH attenuator, which reduces the background due to 14 MeV neutron interactions with the crystal by more than two orders of magnitude and enables the observation of gamma-ray emission from confined α particles in JET deuterium-tritium plasmas. Thanks to its tangential line of sight, the detector can distinguish co- and counter-passing ions. The performance of the instrument is demonstrated through the results of recent JET fast ion experiments in deuterium plasmas.

19.
Rev Sci Instrum ; 92(4): 043552, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243473

ABSTRACT

Neutron emission spectroscopy and neutron yield measurements are important for high neutral beam injection (NBI) power heating at the Experimental Advanced Superconducting Tokamak (EAST). The neutron yields mainly depend on the deposition from NBI to the deuterium plasmas in the EAST. We have recently used TRANSP with time dependent diagnostic results to simulate the transport process of 30 s long pulse deuterium plasma discharges in the EAST, obtaining the time dependent fast ion distribution, neutron emission spectrum, and total neutron emission rate. Combined with the time trace of the result measured by a standard 235U fission chamber, the effects of different configurations of NBI heating in EAST fusion plasmas have been evaluated.

20.
Rev Sci Instrum ; 92(4): 043517, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243482

ABSTRACT

A novel compact spectrometer optimized for the measurement of hard x rays generated by runaway electrons is presented. The detector is designed to be installed in the fan-shaped collimator of the gamma-ray imager diagnostic at the DIII-D tokamak. The spectrometer is based on a 1 × 1 cm2 cerium doped yttrium aluminum perovskite scintillator crystal coupled with a silicon photomultiplier. The detector dynamic energy range is in excess of 10 MeV, with an energy resolution of ∼10% at 661.7 keV. The fast detector signal (≈70 ns full width at half maximum) allows for operation at counting rates in excess of 1 MCps. The gain stability of the system can be monitored in real time using a light-emitting diode embedded in the instrument. The detector is expected to be deployed in the forthcoming DIII-D runaway electron experimental campaign.

SELECTION OF CITATIONS
SEARCH DETAIL