Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36637428

ABSTRACT

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Subject(s)
Methylenetetrahydrofolate Reductase (NADPH2) , Zebrafish , Humans , Pregnancy , Female , Mice , Animals , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Zebrafish/genetics , Zebrafish/metabolism , Folic Acid , Dietary Supplements , Homeostasis , Embryonic Development/genetics
2.
NPJ Genom Med ; 7(1): 18, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288587

ABSTRACT

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10-7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.

3.
PLoS One ; 15(8): e0231364, 2020.
Article in English | MEDLINE | ID: mdl-32804943

ABSTRACT

Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.


Subject(s)
CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/metabolism , Phosphatidylinositols/biosynthesis , Phosphatidylinositols/metabolism , Animals , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/biosynthesis , Inositol Phosphates/metabolism , Lipogenesis , Muscle Development/genetics , Muscles/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
4.
PLoS One ; 10(5): e0127822, 2015.
Article in English | MEDLINE | ID: mdl-26010570

ABSTRACT

We introduce a multicolor labeling strategy (Multibow) for cell tracing experiments in developmental and regenerative processes. Building on Brainbow-based approaches that produce colors by differential expression levels of different fluorescent proteins, Multibow adds a layer of label diversity by introducing a binary code in which reporters are initially OFF and then probabilistically ON or OFF following Cre recombination. We have developed a library of constructs that contains seven different colors and three different subcellular localizations. Combining constructs from this library in the presence of Cre generates cells labeled with multiple independently expressed colors based on if each construct is ON or OFF following recombination. These labels form a unique "barcode" that allows the tracking of the cell and its clonal progenies in addition to expression level differences of each color. We tested Multibow in zebrafish which validates its design concept and suggests its utility for cell tracing applications in development and regeneration.


Subject(s)
Cells/cytology , Developmental Biology/methods , Fluorescent Antibody Technique/methods , Molecular Typing/methods , Specimen Handling/methods , Animals , Animals, Genetically Modified , Cloning, Molecular , Image Processing, Computer-Assisted , Microscopy, Confocal , Staining and Labeling/methods , Zebrafish
5.
PLoS Comput Biol ; 8(12): e1002780, 2012.
Article in English | MEDLINE | ID: mdl-23236265

ABSTRACT

The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available publicly under an open source BSD license (https://github.com/krm15/ACME).


Subject(s)
Automation , Cell Membrane , Cell Shape , Algorithms , Animals , Fluorescence , Zebrafish
6.
Am J Hum Genet ; 91(2): 330-6, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22840364

ABSTRACT

Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have been made in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by a distinct form of PD, we identified a founder truncating mutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have abnormal mitotic mechanics with multipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibroblast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major centriolar protein.


Subject(s)
Centrioles/genetics , Cilia/genetics , Dwarfism/genetics , Dwarfism/pathology , Proteins/genetics , Base Sequence , Cell Cycle Proteins , Centrioles/metabolism , Cilia/pathology , Cytoskeletal Proteins , Female , Gene Components , Humans , Immunohistochemistry , Male , Molecular Sequence Data , Mutation/genetics , Pedigree , RNA Interference , RNA, Small Interfering/genetics , Sequence Analysis, DNA , Spindle Apparatus/genetics , Spindle Apparatus/pathology
7.
PLoS One ; 6(4): e18877, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21533097

ABSTRACT

BACKGROUND: The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner. RESULTS: We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages. CONCLUSION: Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.


Subject(s)
Chloroplasts , Synechococcus/physiology , Animals , Bacterial Proteins/genetics , Base Sequence , DNA/genetics , DNA Primers , Evolution, Molecular , Genetic Engineering , Macrophages/microbiology , Photosynthesis , Plasmids , Synechococcus/genetics , Synechococcus/growth & development , Zebrafish/embryology
8.
BMC Neurosci ; 12: 7, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21232144

ABSTRACT

BACKGROUND: The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc) mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. RESULTS: We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin) is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b) and cryptochrome 3 (cry3), in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh) and serotonin-N-acetyltransferase (aanat2), involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT) siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their WT siblings. CONCLUSION: Our data suggests that circadian rhythms can be initiated and maintained in the absence of SCN and other tissues in the ventral brain. However, the SCN may have a role in regulating the amplitude of rhythms when environmental cues are absent. This provides some of the first evidence that the SCN of teleosts is not essential for establishing circadian rhythms during development. Several SCN-independent circadian rhythms have also been found in mammalian species. Thus, zebrafish may serve as a model system for understanding how vertebrate embryos coordinate rhythms that are controlled by different circadian clocks.


Subject(s)
Circadian Rhythm/genetics , Gene Expression Regulation, Developmental , Pineal Gland/embryology , Suprachiasmatic Nucleus , Zebrafish/embryology , Animals , Larva/genetics , Larva/growth & development , Larva/physiology , Pineal Gland/physiology , Suprachiasmatic Nucleus/embryology , Suprachiasmatic Nucleus/physiology , Zebrafish/growth & development , Zebrafish/physiology
9.
Brain Res ; 1223: 11-24, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18597743

ABSTRACT

Entrainment of circadian clocks to environmental cues such as photoperiod ensures that daily biological rhythms stay in synchronization with the Earth's rotation. The vertebrate pineal organ has a conserved role in circadian regulation as the primary source of the nocturnal hormone melatonin. In lower vertebrates, the pineal has an endogenous circadian clock as well as photoreceptive cells that regulate this clock. The zebrafish opsin protein Exo-rhodopsin (Exorh) is expressed in pineal photoreceptors and is a candidate to mediate the effects of environmental light on pineal rhythms and melatonin synthesis. We demonstrate that Exorh has an important role in regulating gene transcription within the pineal. In developing embryos that lack Exorh, expression of the exorh gene itself and of the melatonin synthesis gene serotonin N-acetyl transferase 2 (aanat2) are significantly reduced. This suggests that the Exorh protein at the cell membrane is part of a signaling pathway that positively regulates transcription of these genes, and ultimately melatonin production, in the pineal. Like many other opsin genes, exorh is expressed with a daily rhythm: mRNA levels are higher at night than during the day. We found that the transcription factor Orthodenticle homeobox 5 (Otx5) activates exorh transcription, while the putative circadian clock component Period 3 (Per3) represses expression during the day, thereby contributing to the rhythm of transcription. This work identifies novel roles for Exorh and Per3, and gives insight into potential interactions between the sensory and circadian systems within the pineal.


Subject(s)
Circadian Rhythm/physiology , Melatonin/biosynthesis , Nuclear Proteins/physiology , Pineal Gland/metabolism , Rhodopsin/physiology , Transcription Factors/physiology , Zebrafish/metabolism , Animals , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Down-Regulation/genetics , Gene Expression Regulation/genetics , Melatonin/metabolism , Nuclear Proteins/genetics , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Period Circadian Proteins , Pineal Gland/cytology , RNA, Messenger/metabolism , Rhodopsin/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Zebrafish/anatomy & histology , Zebrafish/genetics , Zebrafish/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL