Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38884589

ABSTRACT

Plants are dependent on divisions of stem cells to establish cell lineages required for growth. During embryogenesis, early division products are considered to be stem cells, whereas during post-embryonic development, stem cells are present in meristems at the root and shoot apex. PLETHORA/AINTEGUMENTA-LIKE (PLT/AIL) transcription factors are regulators of post-embryonic meristem function and are required to maintain stem cell pools. Despite the parallels between embryonic and post-embryonic stem cells, the role of PLTs during early embryogenesis has not been thoroughly investigated. Here, we demonstrate that the PLT regulome in the zygote, and apical and basal cells is in strong congruence with that of post-embryonic meristematic cells. We reveal that out of all six PLTs, only PLT2 and PLT4/BABY BOOM (BBM) are expressed in the zygote, and that these two factors are essential for progression of embryogenesis beyond the zygote stage and first divisions. Finally, we show that other PLTs can rescue plt2 bbm defects when expressed from the PLT2 and BBM promoters, establishing upstream regulation as a key factor in early embryogenesis. Our data indicate that generic PLT factors facilitate early embryo development in Arabidopsis by induction of meristematic potential.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Meristem , Transcription Factors , Meristem/metabolism , Meristem/embryology , Meristem/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/embryology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Developmental , Seeds/metabolism , Seeds/genetics , Seeds/growth & development , Zygote/metabolism
2.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739785

ABSTRACT

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Subject(s)
Meiosis , RNA, Plant , Zea mays , Zea mays/genetics , Zea mays/metabolism , Meiosis/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcriptome , Oryza/genetics , Oryza/metabolism
3.
Trends Plant Sci ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38570278

ABSTRACT

Plant scientists are rapidly integrating single-cell RNA sequencing (scRNA-seq) into their workflows. Maximizing the potential of scRNA-seq requires a proper understanding of the spatiotemporal context of cells. However, positional information is inherently lost during scRNA-seq, limiting its potential to characterize complex biological systems. In this review we highlight how current single-cell analysis pipelines cannot completely recover spatial information, which confounds biological interpretation. Various strategies exist to identify the location of RNA, from classical RNA in situ hybridization to spatial transcriptomics. Herein we discuss the possibility of utilizing this spatial information to supervise single-cell analyses. An integrative approach will maximize the potential of each technology, and lead to insights which go beyond the capability of each individual technology.

4.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617318

ABSTRACT

Reproductive phasiRNAs are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely (i) not triggered by microRNAs, (ii) not loaded by AGO18 proteins, and (iii) not capable of mediating cis-cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.

5.
Plant Cell ; 36(7): 2550-2569, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38513608

ABSTRACT

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S preribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of noncell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor toward embryonic fate.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mutation , Seeds , Arabidopsis/genetics , Arabidopsis/embryology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mutation/genetics , Seeds/genetics , Seeds/growth & development , Gene Expression Regulation, Plant , RNA, Ribosomal/genetics
6.
Methods Mol Biol ; 2722: 67-78, 2024.
Article in English | MEDLINE | ID: mdl-37897600

ABSTRACT

Nuclei contain essential information for cell states, including chromatin and RNA profiles - features which are nowadays accessible using high-throughput sequencing applications. Here, we describe analytical pipelines including nucleus isolation from differentiated xylem tissues by fluorescence-activated nucleus sorting (FANS), as well as subsequent SMART-seq2-based transcriptome profiling and assay for transposase-accessible chromatin (ATAC)-seq-based chromatin analysis. Combined with tissue-specific expression of nuclear fluorescent reporters, these pipelines allow obtaining tissue-specific data on gene expression and on chromatin structure and are applicable for a large spectrum of cell types, tissues, and organs. Considering, however, the extreme degree of differentiation found in xylem cells with programmed cell death happening during vessel element formation and their role as a long-term depository for atmospheric CO2 in the form of wood, xylem cells represent intriguing and relevant objects for large-scale profilings of their cellular signatures.


Subject(s)
Cell Nucleus , Chromatin , Chromatin/genetics , Chromatin/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Transcriptome , High-Throughput Nucleotide Sequencing , Gene Expression Profiling , Xylem , Sequence Analysis, DNA
7.
Proc Natl Acad Sci U S A ; 120(42): e2302069120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824524

ABSTRACT

Stem cells are essential for the development and organ regeneration of multicellular organisms, so their infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi). In plants, a small group of stem cells harbored within the shoot apical meristem generate all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate in these cells, yet the molecular bases of this exclusion remain only partially understood. Here, we show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological and economic relevance and lays the foundations for our future understanding of the unique systems underlying stem cell immunity.


Subject(s)
RNA Viruses , Salicylic Acid , Animals , RNA Interference , RNA Viruses/genetics , Stem Cells/metabolism , Plant Stems/genetics , Plant Stems/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , Mammals/genetics
8.
Curr Biol ; 33(20): 4381-4391.e3, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37729909

ABSTRACT

Noncoding polymorphism frequently associates with phenotypic variation, but causation and mechanism are rarely established. Noncoding single-nucleotide polymorphisms (SNPs) characterize the major haplotypes of the Arabidopsis thaliana floral repressor gene FLOWERING LOCUS C (FLC). This noncoding polymorphism generates a range of FLC expression levels, determining the requirement for and the response to winter cold. The major adaptive determinant of these FLC haplotypes was shown to be the autumnal levels of FLC expression. Here, we investigate how noncoding SNPs influence FLC transcriptional output. We identify an upstream transcription start site (uTSS) cluster at FLC, whose usage is increased by an A variant at the promoter SNP-230. This variant is present in relatively few Arabidopsis accessions, with the majority containing G at this site. We demonstrate a causal role for the A variant at -230 in reduced FLC transcriptional output. The G variant upregulates FLC expression redundantly with the major transcriptional activator FRIGIDA (FRI). We demonstrate an additive interaction of SNP-230 with an intronic SNP+259, which also differentially influences uTSS usage. Combinatorial interactions between noncoding SNPs and transcriptional activators thus generate quantitative variation in FLC transcription that has facilitated the adaptation of Arabidopsis accessions to distinct climates.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Flowers/physiology , Transcription Factors/metabolism , Polymorphism, Single Nucleotide , Gene Expression Regulation, Plant
9.
PLoS Genet ; 19(6): e1010787, 2023 06.
Article in English | MEDLINE | ID: mdl-37343034

ABSTRACT

Although the biological utilities of endogenous RNAi (endo-RNAi) have been largely elusive, recent studies reveal its critical role in the non-model fruitfly Drosophila simulans to suppress selfish genes, whose unchecked activities can severely impair spermatogenesis. In particular, hairpin RNA (hpRNA) loci generate endo-siRNAs that suppress evolutionary novel, X-linked, meiotic drive loci. The consequences of deleting even a single hpRNA (Nmy) in males are profound, as such individuals are nearly incapable of siring male progeny. Here, comparative genomic analyses of D. simulans and D. melanogaster mutants of the core RNAi factor dcr-2 reveal a substantially expanded network of recently-emerged hpRNA-target interactions in the former species. The de novo hpRNA regulatory network in D. simulans provides insight into molecular strategies that underlie hpRNA emergence and their potential roles in sex chromosome conflict. In particular, our data support the existence of ongoing rapid evolution of Nmy/Dox-related networks, and recurrent targeting of testis HMG-box loci by hpRNAs. Importantly, the impact of the endo-RNAi network on gene expression flips the convention for regulatory networks, since we observe strong derepression of targets of the youngest hpRNAs, but only mild effects on the targets of the oldest hpRNAs. These data suggest that endo-RNAi are especially critical during incipient stages of intrinsic sex chromosome conflicts, and that continual cycles of distortion and resolution may contribute to speciation.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Male , RNA Interference , Drosophila melanogaster/genetics , Drosophila/genetics , Drosophila simulans , Genomics , Logic
11.
Genome Biol ; 23(1): 143, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768836

ABSTRACT

We developed Bookend, a package for transcript assembly that incorporates data from different RNA-seq techniques, with a focus on identifying and utilizing RNA 5' and 3' ends. We demonstrate that correct identification of transcript start and end sites is essential for precise full-length transcript assembly. Utilization of end-labeled reads present in full-length single-cell RNA-seq datasets dramatically improves the precision of transcript assembly in single cells. Finally, we show that hybrid assembly across short-read, long-read, and end-capture RNA-seq datasets from Arabidopsis thaliana, as well as meta-assembly of RNA-seq from single mouse embryonic stem cells, can produce reference-quality end-to-end transcript annotations.


Subject(s)
Arabidopsis , RNA , Animals , Arabidopsis/genetics , Mice , RNA/genetics , RNA-Seq , Sequence Analysis, RNA/methods , Transcriptome
12.
EMBO Rep ; 23(3): e53400, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34931432

ABSTRACT

Co-evolution between hosts' and parasites' genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral-like silencing response. To investigate this response's activation, we studied the single-copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full-length genomic flGAG-POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG-POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5'OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto-unrecognized "translation-dependent silencing" (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics
13.
Curr Biol ; 31(21): R1424-R1426, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34752766

ABSTRACT

Parental contributions to zygotes can influence early embryogenesis and may regulate the distribution of maternal resources to progeny. A new study in Arabidopsis thaliana has demonstrated that signaling components from maternal sporophytic tissues and paternal gametes converge in zygotes to promote elongation of the extraembryonic suspensor, which supports the developing embryo proper.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Seeds/metabolism
14.
Elife ; 102021 09 30.
Article in English | MEDLINE | ID: mdl-34591013

ABSTRACT

Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only a few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant, ectopic, and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3, and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady-state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Polyadenylation , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Communication , Intracellular Signaling Peptides and Proteins/genetics , Protein Binding , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
15.
Elife ; 102021 07 23.
Article in English | MEDLINE | ID: mdl-34296996

ABSTRACT

DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA Methylation , DNA-Cytosine Methylases/genetics , MicroRNAs/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatin/metabolism , DNA-Cytosine Methylases/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , MicroRNAs/metabolism
16.
Development ; 148(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34142712

ABSTRACT

Soon after fertilization of egg and sperm, plant genomes become transcriptionally activated and drive a series of coordinated cell divisions to form the basic body plan during embryogenesis. Early embryonic cells rapidly diversify from each other, and investigation of the corresponding gene expression dynamics can help elucidate underlying cellular differentiation programs. However, current plant embryonic transcriptome datasets either lack cell-specific information or have RNA contamination from surrounding non-embryonic tissues. We have coupled fluorescence-activated nuclei sorting together with single-nucleus mRNA-sequencing to construct a gene expression atlas of Arabidopsis thaliana early embryos at single-cell resolution. In addition to characterizing cell-specific transcriptomes, we found evidence that distinct epigenetic and transcriptional regulatory mechanisms operate across emerging embryonic cell types. These datasets and analyses, as well as the approach we devised, are expected to facilitate the discovery of molecular mechanisms underlying pattern formation in plant embryos. This article has an associated 'The people behind the papers' interview.


Subject(s)
Arabidopsis/embryology , Arabidopsis/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Transcriptome , Cell Nucleus/metabolism , Embryonic Development , Epigenomics , Gene Expression Profiling , Genome, Plant , Plant Cells/metabolism , RNA, Messenger , Transcription Factors
17.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879620

ABSTRACT

Quantitative variation in expression of the Arabidopsis floral repressor FLC influences whether plants overwinter before flowering, or have a rapid cycling habit enabling multiple generations a year. Genetic analysis has identified activators and repressors of FLC expression but how they interact to set expression level is poorly understood. Here, we show that antagonistic functions of the FLC activator FRIGIDA (FRI) and the repressor FCA, at a specific stage of embryo development, determine FLC expression and flowering. FRI antagonizes an FCA-induced proximal polyadenylation to increase FLC expression and delay flowering. Sector analysis shows that FRI activity during the early heart stage of embryo development maximally delays flowering. Opposing functions of cotranscriptional regulators during an early embryonic developmental window thus set FLC expression levels and determine flowering time.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/metabolism , RNA-Binding Proteins/metabolism , Arabidopsis/embryology , Arabidopsis/growth & development , Embryonic Development , Flowers/growth & development , Polyadenylation
18.
Curr Biol ; 31(3): R129-R131, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33561411

ABSTRACT

DNA methylation is reconfigured during male reproduction in plants, but little is known regarding the mechanisms controlling these epigenetic dynamics. New research highlights how the cell cycle can influence DNA methylation dynamics observed during male gametogenesis and may induce epigenetic variation in clonally propagated plants.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Cell Cycle/genetics , Epigenomics , Male , Plants/genetics
19.
Methods Cell Biol ; 161: 181-195, 2021.
Article in English | MEDLINE | ID: mdl-33478689

ABSTRACT

Expansion microscopy (ExM) improves image resolution of specimens without requirements of sophisticated techniques or equipment. Probes or proteins are anchored onto an acrylamide gel matrix which is then expanded with osmotic pressure. As the physical distance between two signal points increases, previously confounded signals can be resolved while their relative spatial locations are retained. ExM has been successfully applied to several animal tissues, but its application to plant tissues was only recently demonstrated. Here we provide a detailed ExM protocol for plant tissues using fluorescent immunostaining of developing Arabidopsis thaliana (Arabidopsis) seeds as an example. This modified ExM protocol enables expansion of ovule/seed samples, and preserves the majority of fluorescent protein signals in the expanded samples. The fluorescent immunostaining observed using this protocol demonstrates the feasibility of detecting cellular events and subcellular structures in expanded plant samples. This ExM protocol variant for plants can serve as a guideline for applying ExM to various plant tissues and help increase the resolution of corresponding microscopy based studies.


Subject(s)
Arabidopsis , Microscopy , Seeds , Fluorescent Antibody Technique , Proteins
20.
Nat Plants ; 7(1): 34-41, 2021 01.
Article in English | MEDLINE | ID: mdl-33398155

ABSTRACT

Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and notable economic losses1,2. Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding future food production3. Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE-1 and -2 associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to controlling the activity of retrotransposons in male meiocyte initials. Biochemical and structural analyses revealed how male-associated Argonaute activity and its interaction with retrotransposon RNA targets is modulated through the dynamic phosphorylation of a set of highly conserved, surface-located serine residues. Our results demonstrate that an Argonaute-dependent, RNA-guided surveillance mechanism is critical in plants to sustain male fertility under environmentally constrained conditions, by controlling the mutagenic activity of transposons in male germ cells.


Subject(s)
DNA Transposable Elements/genetics , Zea mays/genetics , Crop Production , DNA Transposable Elements/physiology , Fertility , Heat-Shock Response , Plants, Genetically Modified , Pollen/growth & development , Pollen/physiology , Proteomics , Zea mays/growth & development , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...