Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biosci ; 13(1): 170, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705092

ABSTRACT

BACKGROUND: Numerous genes, including SOD1, mutated in familial and sporadic amyotrophic lateral sclerosis (f/sALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. One possible outcome of chromosomal instability and repair processes is extrachromosomal circular DNA (eccDNA) formation. Therefore, eccDNA might accumulate in f/sALS with yet unknown function. METHODS: We combined rolling circle amplification with linear DNA digestion to purify eccDNA from the cervical spinal cord of 9 co-isogenic symptomatic hSOD1G93A mutants and 10 controls, followed by deep short-read sequencing. We mapped the eccDNAs and performed differential analysis based on the split read signal of the eccDNAs, referred as DifCir, between the ALS and control specimens, to find differentially produced per gene circles (DPpGC) in the two groups. Compared were eccDNA abundances, length distributions and genic profiles. We further assessed proteome alterations in ALS by mass spectrometry, and matched the DPpGCs with differentially expressed proteins (DEPs) in ALS. Additionally, we aligned the ALS-specific DPpGCs to ALS risk gene databases. RESULTS: We found a six-fold enrichment in the number of unique eccDNAs in the genotoxic ALS-model relative to controls. We uncovered a distinct genic circulome profile characterized by 225 up-DPpGCs, i.e., genes that produced more eccDNAs from distinct gene sequences in ALS than under control conditions. The inter-sample recurrence rate was at least 89% for the top 6 up-DPpGCs. ALS proteome analyses revealed 42 corresponding DEPs, of which 19 underlying genes were itemized for an ALS risk in GWAS databases. The up-DPpGCs and their DEP tandems mainly impart neuron-specific functions, and gene set enrichment analyses indicated an overrepresentation of the adenylate cyclase modulating G protein pathway. CONCLUSIONS: We prove, for the first time, a significant enrichment of eccDNA in the ALS-affected spinal cord. Our triple circulome, proteome and genome approach provide indication for a potential importance of certain eccDNAs in ALS neurodegeneration and a yet unconsidered role as ALS biomarkers. The related functional pathways might open up new targets for therapeutic intervention.

2.
Trends Genet ; 38(7): 766-781, 2022 07.
Article in English | MEDLINE | ID: mdl-35277298

ABSTRACT

Extrachromosomal circular DNA (eccDNA) is a closed-circle, nuclear, nonplasmid DNA molecule found in all tested eukaryotes. eccDNA plays important roles in cancer pathogenesis, evolution of tumor heterogeneity, and therapeutic resistance. It is known under many names, including very large cancer-specific circular extrachromosomal DNA (ecDNA), which carries oncogenes and is often amplified in cancer cells. Our understanding of eccDNA has historically been limited and fragmented. To provide better a context of new and previous research on eccDNA, in this review we give an overview of the various names given to eccDNA at different times. We describe the different mechanisms for formation of eccDNA and the methods used to study eccDNA thus far. Finally, we explore the potential clinical value of eccDNA.


Subject(s)
DNA, Circular , Neoplasms , DNA/genetics , DNA, Circular/genetics , Humans , Neoplasms/genetics
3.
Cancers (Basel) ; 13(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34944801

ABSTRACT

The triple-negative breast cancer (TNBC) subtype, defined as negative for ER, PgR, and HER2, is biologically more aggressive and with a poorer prognosis than the other subtypes, in part due to the lack of suitable targeted therapies. Consequently, identification of any potential novel therapeutic option, predictive and/or prognostic biomarker, or any other relevant information that may impact the clinical management of this group of patients is valuable. The HLA class II histocompatibility antigen γ chain, or cluster of differentiation 74 (CD74), has been associated with TNBCs, and poorer survival. However, discordant results have been reported for immunohistochemical studies of CD74 expression in breast cancer. Here we report validation studies for use of a novel CD74 antibody, UMAb231. We used this antibody to stain a TMA including 640 human breast cancer samples, and found no association with the TNBC subtype, but did find a positive correlation with outcome. We also found associations between CD74 expression and immune cell infiltration, and expression of programmed death ligand 1 (PD-L1). Given that CD74 may play a role in innate immune system responses and the potential of immunotherapy as a viable treatment strategy for TNBCs, CD74 expression may have predictive value for immune checkpoint therapies.

4.
Stem Cells ; 35(8): 1898-1912, 2017 08.
Article in English | MEDLINE | ID: mdl-28600813

ABSTRACT

A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including ß-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/ß-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation of pathways associated with cell viability, and CSCs are the major differences between tumor-initiating and nontumorigenic cells independent of their epithelial-like/mesenchymal-like phenotype. These altered pathways may provide targets for future drug development to eliminate CSCs, and the cell model may be a useful tool in such drug screenings. Stem Cells 2017;35:1898-1912.


Subject(s)
Drug Evaluation, Preclinical , Models, Biological , Neoplastic Stem Cells/pathology , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Antigens, CD/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation , Cell Shape , Cell Survival , Epithelial-Mesenchymal Transition , Female , Humans , Mass Spectrometry , Mice , Protein Interaction Maps , Proteomics , Reproducibility of Results , Spheroids, Cellular/pathology , Wnt Signaling Pathway
5.
BMC Cancer ; 16: 34, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26801902

ABSTRACT

BACKGROUND: Studies in taxane and/or anthracycline refractory metastatic breast cancer (mBC) patients have shown approximately 30% response rates to irinotecan. Hence, a significant number of patients will experience irinotecan-induced side effects without obtaining any benefit. The aim of this study was to lay the groundwork for development of predictive biomarkers for irinotecan treatment in BC. METHODS: We established BC cell lines with acquired or de novo resistance to SN-38, by exposing the human BC cell lines MCF-7 and MDA-MB-231 to either stepwise increasing concentrations over 6 months or an initial high dose of SN-38 (the active metabolite of irinotecan), respectively. The resistant cell lines were analyzed for cross-resistance to other anti-cancer drugs, global gene expression, growth rates, TOP1 and TOP2A gene copy numbers and protein expression, and inhibition of the breast cancer resistance protein (ABCG2/BCRP) drug efflux pump. RESULTS: We found that the resistant cell lines showed 7-100 fold increased resistance to SN-38 but remained sensitive to docetaxel and the non-camptothecin Top1 inhibitor LMP400. The resistant cell lines were characterized by Top1 down-regulation, changed isoelectric points of Top1 and reduced growth rates. The gene and protein expression of ABCG2/BCRP was up-regulated in the resistant sub-lines and functional assays revealed BCRP as a key mediator of SN-38 resistance. CONCLUSIONS: Based on our preclinical results, we suggest analyzing the predictive value of the BCRP in breast cancer patients scheduled for irinotecan treatment. Moreover, LMP400 should be tested in a clinical setting in breast cancer patients with resistance to irinotecan.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Camptothecin/analogs & derivatives , DNA Topoisomerases, Type I/genetics , Neoplasm Proteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/biosynthesis , Antigens, Neoplasm/genetics , Breast Neoplasms/pathology , Camptothecin/administration & dosage , Camptothecin/adverse effects , DNA Topoisomerases, Type I/biosynthesis , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , Docetaxel , Drug Resistance, Neoplasm/genetics , Female , Gene Dosage/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Irinotecan , MCF-7 Cells , Neoplasm Proteins/biosynthesis , Poly-ADP-Ribose Binding Proteins , Taxoids/administration & dosage
6.
J Cell Sci ; 126(Pt 20): 4707-20, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24006261

ABSTRACT

Matrix metalloproteinases (MMPs), in particular MMP-2, MMP-9 and MMP-14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (a disintegrin and metalloproteinases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here, we show that there is a positive correlation between MMP-14 and ADAM12 expression in human breast cancer. We demonstrated that in 293-VnR and human breast cancer cells expressing ADAM12 at the cell surface, endogenous MMP-14 was recruited to the cell surface, resulting in its activation. Subsequent to this activation, gelatin degradation was stimulated and tumor cell apoptosis was decreased, with reduced expression of the pro-apoptotic proteins BCL2L11 and BIK. The effect on gelatin degradation was abrogated by inhibition of the MMP-14 activity and appeared to be dependent on cell surface αVß3 integrin localization, but neither the catalytic activity of ADAM12 nor the cytoplasmic tail of ADAM12 were required. The significance of ADAM12-induced activation of MMP-14 was underscored by a reduction in MMP-14-mediated gelatin degradation and abolition of apoptosis-protective effects by specific monoclonal antibodies against ADAM12. Furthermore, orthotopic implantation of ADAM12-expressing MCF7 cells in nude mice produced tumors with increased levels of activated MMP-14 and confirmed that ADAM12 protects tumor cells against apoptosis, leading to increased tumor progression. In conclusion, our data suggest that a ternary protein complex composed of ADAM12, αVß3 integrin and MMP-14 at the tumor cell surface regulates the function of MMP-14. This interaction might point to a novel concept for the development of MMP-14-targeting drugs in treating cancer.


Subject(s)
ADAM Proteins/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Gelatin/metabolism , Matrix Metalloproteinase 14/metabolism , Membrane Proteins/metabolism , ADAM Proteins/immunology , ADAM12 Protein , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cell Growth Processes/physiology , Cell Line, Tumor , Female , HEK293 Cells , Heterografts , Humans , Integrin alphaVbeta3/metabolism , MCF-7 Cells , Matrix Metalloproteinase 2/metabolism , Membrane Proteins/immunology , Mice , Mice, Inbred NOD
7.
Biochem J ; 452(1): 97-109, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23458101

ABSTRACT

ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened several membrane-anchored proteins to further dissect the substrate profile of ADAM12-mediated ectodomain shedding, and found shedding of five previously unreported substrates [Kitl1, VE-cadherin (vascular endothelial cadherin), Flk-1 (fetal liver kinase 1), Tie-2, and VCAM-1 (vascular cell adhesion molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation. In parallel, the shed form of VE-cadherin was elevated in such cytokine-stimulated endothelial cells, and ADAM12 siRNA (small interfering RNA) knockdown reduced cytokine-induced shedding of VE-cadherin. In conclusion, the results of the present study demonstrate a role for ADAM12 in ectodomain shedding of several membrane-anchored endothelial proteins. We speculate that this process may have importance in tumour neovascularization or/and tumour cell extravasation.


Subject(s)
ADAM Proteins/biosynthesis , ADAM Proteins/chemistry , Breast Neoplasms/blood supply , Breast Neoplasms/chemistry , Human Umbilical Vein Endothelial Cells/chemistry , Membrane Proteins/chemistry , ADAM Proteins/deficiency , ADAM12 Protein , Animals , Breast Neoplasms/genetics , Cell Line, Transformed , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/deficiency , Mice , Mice, Knockout , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...