Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256076

ABSTRACT

The imbalance of the gut microbiota (GM) is known as dysbiosis and is associated with disorders such as obesity. The increasing prevalence of microorganisms harboring antibiotic resistance genes (ARG) in the GM has been reported as a potential risk for spreading multi-drug-resistant pathogens. The objective of this work was the evaluation, in a fecal culture model, of different probiotics for their ability to modulate GM composition and ARG levels on two population groups, extremely obese (OB) and normal-weight (NW) subjects. Clear differences in the basal microbiota composition were observed between NW and OB donors. The microbial profile assessed by metataxonomics revealed the broader impact of probiotics on the OB microbiota composition. Also, supplementation with probiotics promoted significant reductions in the absolute levels of tetM and tetO genes. Regarding the blaTEM gene, a minor but significant decrease in both donor groups was detected after probiotic addition. A negative association between the abundance of Bifidobacteriaceae and the tetM gene was observed. Our results show the ability of some of the tested strains to modulate GM. Moreover, the results suggest the potential application of probiotics for reducing the levels of ARG, which constitutes an interesting target for the future development of probiotics.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Microbiota , Probiotics , Humans , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Obesity
2.
Front Microbiol ; 12: 630572, 2021.
Article in English | MEDLINE | ID: mdl-33633711

ABSTRACT

The intestinal microbiota plays important roles in the maintenance of health. Strategies aiming at its modulation, such as probiotics, have received a deal of attention. Several strains have been studied in different in vitro models; however, the correlation of results obtained with the in vivo data has been limited. This questions the usefulness of such in vitro selection models, traditionally relying on over-simplified tests, not considering the influence of the accompanying microbiota or focusing on microbiota composition without considering functional traits. Here we assess the potential of six Bifidobacterium, Lactobacillus and Lacticaseibacillus strains in an in vitro model to determine their impact on the microbiota not just in terms of composition but also of functionality. Moreover, we compared the responses obtained in two different population groups: normal-weight and severely obese subjects. Fecal cultures were conducted to evaluate the impact of the strains on specific intestinal microbial groups, on the production of short-chain fatty acids, and on two functional responses: the production of gas and the interaction with human intestinal epithelial cells. The response to the different probiotics differed between both human groups. The addition of the probiotic strains did not induce major changes on the microbiota composition, with significant increases detected almost exclusively for the species added. Higher levels of gas production were observed in cultures from normal-weight subjects than in the obese population, with some strains being able to significantly reduce gas production in the latter group. Moreover, in obese subjects all the Bifidobacterium strains tested and Lacticaseibacillus rhamnosus GG were able to modify the response of the intestinal cells, restoring values similar to those obtained with the microbiotas of normal-weight subjects. Our results underline the need for the screening and selection of probiotics in a target-population specific manner by using appropriate in vitro models before enrolling in clinical intervention trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...