Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38518983

ABSTRACT

Copper (Cu2+) is a biologically essential element that participates in numerous physiological processes. However, elevated concentrations of copper have been associated with cellular oxidative stress and neurodegenerative diseases. Organo­selenium compounds such as diphenyl diselenide (DPDS) have in vitro and in vivo antioxidant properties. Hence, we hypothesized that DPDS may modulate the toxicity of Cu2+ in Drosophila melanogaster. The acute effects (4 days of exposure) caused by a high concentration of Cu2+ (3 mM) were studied using endpoints of toxicity such as survival and behavior in D. melanogaster. The potential protective effect of low concentration of DPDS (20 µM) against Cu2+ was also investigated. Adult flies aged 1-5 days post-eclosion (both sexes) were divided into four groups: Control, DPDS (20 µM), CuSO4 (3 mM), and the combined exposure of DPDS (20 µM) and CuSO4 (3 mM). Survival, biochemical, and behavioral parameters were determined. Co-exposure of DPDS and CuSO4 increased acetylcholinesterase (AChE) activity and the generation of reactive oxygen species (ROS as determined by DFCH oxidation). Contrary to our expectation, the co-exposure reduced survival, body weight, locomotion, catalase activity, and cell viability in relation to control group. Taken together, DPDS potentiated the Cu2+ toxicity.


Subject(s)
Behavior, Animal , Benzene Derivatives , Drosophila melanogaster , Organoselenium Compounds , Oxidative Stress , Reactive Oxygen Species , Animals , Benzene Derivatives/toxicity , Benzene Derivatives/pharmacology , Drosophila melanogaster/drug effects , Organoselenium Compounds/pharmacology , Organoselenium Compounds/toxicity , Male , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Behavior, Animal/drug effects , Female , Copper/toxicity , Acetylcholinesterase/metabolism , Antioxidants/metabolism , Catalase/metabolism , Copper Sulfate/toxicity , Locomotion/drug effects , Cell Survival/drug effects
2.
J Toxicol Environ Health A ; 75(16-17): 1012-22, 2012.
Article in English | MEDLINE | ID: mdl-22852851

ABSTRACT

δ-Aminolevulinic acid dehydratase (δ-ALAD) is a metalloprotein that catalyzes porphobilinogen formation. This enzyme is sensitive to pro-oxidants and classically used as a biomarker of lead (Pb) intoxication. Diphenyl diselenide [(PhSe)2] and analogs bis(4-chlorophenyl) diselenide [(pCl3PhSe)2], bis(4-methoxyphenyl)diselenide [(pCH3OPhSe)2], and bis[3-(trifluoromethy)phenyl] diselenide [(mCF3PhSe)2] inhibit mammalian δ-ALAD by oxidizing enzyme cysteinyl residues, which are involved in diselenide-induced toxicity. 2-Cysteinyl residues from δ-ALAD are believed to sequentially interact with (PhSe)2. Thus this study utilized protein-ligand docking analyses to determine which cysteinyl residues might be involved in the inhibitory effect of (PhSe)2 and analogs toward δ-ALAD. All diselenides that interact in a similar manner with the active site of δ-ALAD were examined. Docking simulations indicated an important role for π-π interactions involving Phe208 and cation-π interactions involving Lys199 and Arg209 residues with the aromatic ring of (PhSe)2 and analogs. Based upon these interactions an approximation between Se atoms and -SH of Cys124, with distances ranging between 3.3 Å and 3.5 Å, was obtained. These data support our previous postulations regarding the mechanism underlying δ-ALAD oxidation mediated by (PhSe)2 and analogs. Based on protein-ligand docking analyses, data indicated that -SH of Cys124 attacks one of the Se atoms of -SH of (PhSe)2 releasing one PhSeH (selenophenol). Subsequently, the -SH of Cys132 attacks the sulfur atom of Cys124 (from the bond of E-S-Se-Ph indermediate), generating the second PhSe⁻, and the oxidized and inhibited δ-ALAD. In conclusion, AutoDock Vina 1.1.1 was a useful tool to search for diselenides inhibitors of δ-ALAD, and, most importantly, it provided insight into molecular mechanisms involved in enzyme inhibition.


Subject(s)
Mammals/metabolism , Porphobilinogen Synthase/antagonists & inhibitors , Selenium Compounds/pharmacology , Animals , Catalytic Domain , Computer Simulation , Models, Chemical , Models, Molecular , Molecular Structure , Selenium Compounds/chemistry , Software , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL