Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 14: 1036372, 2023.
Article in English | MEDLINE | ID: mdl-36960277

ABSTRACT

The ciliate Paramecium bursaria harbors several hundred symbiotic algae in its cell and is widely used as an experimental model for studying symbiosis between eukaryotic cells. Currently, various types of bacteria and eukaryotic microorganisms are used as food for culturing P. bursaria; thus, the cultivation conditions are not uniform among researchers. To unify cultivation conditions, we established cloned, unfed strains that can be cultured using only sterile medium without exogenous food. The proliferation of these unfed strains was suppressed in the presence of antibiotics, suggesting that bacteria are required for the proliferation of the unfed strains. Indeed, several kinds of bacteria, such as Burkholderiales, Rhizobiales, Rhodospirillales, and Sphingomonadales, which are able to fix atmospheric nitrogen and/or degrade chemical pollutants, were detected in the unfed strains. The genetic background of the individually cloned, unfed strains were the same, but the proliferation curves of the individual P. bursaria strains were very diverse. Therefore, we selected multiple actively and poorly proliferating individual strains and compared the bacterial composition among the individual strains using 16S rDNA sequencing. The results showed that the bacterial composition among actively proliferating P. bursaria strains was highly homologous but different to poorly proliferating strains. Using unfed strains, the cultivation conditions applied in different laboratories can be unified, and symbiosis research on P. bursaria will make great progress.

2.
Nat Med ; 26(10): 1541-1548, 2020 10.
Article in English | MEDLINE | ID: mdl-32895570

ABSTRACT

Drug-induced liver injury (DILI) is a leading cause of termination in drug development programs and removal of drugs from the market; this is partially due to the inability to identify patients who are at risk1. In this study, we developed a polygenic risk score (PRS) for DILI by aggregating effects of numerous genome-wide loci identified from previous large-scale genome-wide association studies2. The PRS predicted the susceptibility to DILI in patients treated with fasiglifam, amoxicillin-clavulanate or flucloxacillin and in primary hepatocytes and stem cell-derived organoids from multiple donors treated with over ten different drugs. Pathway analysis highlighted processes previously implicated in DILI, including unfolded protein responses and oxidative stress. In silico screening identified compounds that elicit transcriptomic signatures present in hepatocytes from individuals with elevated PRS, supporting mechanistic links and suggesting a novel screen for safety of new drug candidates. This genetic-, cellular-, organoid- and human-scale evidence underscored the polygenic architecture underlying DILI vulnerability at the level of hepatocytes, thus facilitating future mechanistic studies. Moreover, the proposed 'polygenicity-in-a-dish' strategy might potentially inform designs of safer, more efficient and robust clinical trials.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Alleles , Benzofurans/therapeutic use , Case-Control Studies , Cells, Cultured , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/epidemiology , Cohort Studies , Datasets as Topic/statistics & numerical data , Gene Expression Profiling , Gene Frequency , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Microarray Analysis , Multifactorial Inheritance/genetics , Sulfones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL