Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Stroke ; 55(5): 1235-1244, 2024 May.
Article in English | MEDLINE | ID: mdl-38511386

ABSTRACT

BACKGROUND: The relationship between dynamic cerebral autoregulation (dCA) and functional outcome after acute ischemic stroke (AIS) is unclear. Previous studies are limited by small sample sizes and heterogeneity. METHODS: We performed a 1-stage individual patient data meta-analysis to investigate associations between dCA and functional outcome after AIS. Participating centers were identified through a systematic search of the literature and direct invitation. We included centers with dCA data within 1 year of AIS in adults aged over 18 years, excluding intracerebral or subarachnoid hemorrhage. Data were obtained on phase, gain, coherence, and autoregulation index derived from transfer function analysis at low-frequency and very low-frequency bands. Cerebral blood velocity, arterial pressure, end-tidal carbon dioxide, heart rate, stroke severity and sub-type, and comorbidities were collected where available. Data were grouped into 4 time points after AIS: <24 hours, 24 to 72 hours, 4 to 7 days, and >3 months. The modified Rankin Scale assessed functional outcome at 3 months. Modified Rankin Scale was analyzed as both dichotomized (0 to 2 versus 3 to 6) and ordinal (modified Rankin Scale scores, 0-6) outcomes. Univariable and multivariable analyses were conducted to identify significant relationships between dCA parameters, comorbidities, and outcomes, for each time point using generalized linear (dichotomized outcome), or cumulative link (ordinal outcome) mixed models. The participating center was modeled as a random intercept to generate odds ratios with 95% CIs. RESULTS: The sample included 384 individuals (35% women) from 7 centers, aged 66.3±13.7 years, with predominantly nonlacunar stroke (n=348, 69%). In the affected hemisphere, higher phase at very low-frequency predicted better outcome (dichotomized modified Rankin Scale) at <24 (crude odds ratios, 2.17 [95% CI, 1.47-3.19]; P<0.001) hours, 24-72 (crude odds ratios, 1.95 [95% CI, 1.21-3.13]; P=0.006) hours, and phase at low-frequency predicted outcome at 3 (crude odds ratios, 3.03 [95% CI, 1.10-8.33]; P=0.032) months. These results remained after covariate adjustment. CONCLUSIONS: Greater transfer function analysis-derived phase was associated with improved functional outcome at 3 months after AIS. dCA parameters in the early phase of AIS may help to predict functional outcome.

2.
Chemosphere ; 349: 140913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072202

ABSTRACT

High energy demand required in membrane distillation (MD) process to heat feed water and maintain the necessary temperature gradient across the membrane presents a challenge to widespread adoption of MD. In response to this challenge, surface heating membrane distillation (SHMD) has emerged as a promising solution. SHMD can employ solar or electrical energy to directly heat the membrane and feed, eliminating the need for an external heat source to heat feed water. In this study, we explore electrothermally-driven interfacial evaporation using a multi-walled carbon nanotube (MWCNT)-based composite membrane and further envision its utilization for high-efficient SHMD. Upon application of voltage, the resistance of the MWCNT leads to the conversion of electrical energy into heat, which is then uniformly transferred to feeds. The MWCNT-based composite membrane exhibited an evaporative water flux of up to 2.34 kg m-2h-1 with an associated energy efficiency of 61% and demonstrated outstanding localized surface heating performance. The employed membranes exhibited no significant variations in either resistance or surface temperature, regardless of the direction of the applied electric field. Energy parameters from the electrothermal membranes showed quantitative agreement with values reported for various electrothermal MD systems, suggesting the potential of the composite membranes in energy-efficient and cost-effective localized heating MD applications.


Subject(s)
Nanostructures , Water Purification , Membranes, Artificial , Sunlight , Water
3.
Ann Hepatol ; 29(2): 101167, 2024.
Article in English | MEDLINE | ID: mdl-37802415

ABSTRACT

INTRODUCTION AND OBJECTIVES: Acute liver failure, also known as fulminant hepatic failure (FHF), includes a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction and hepatic encephalopathy. The objective of this study was to assess cerebral autoregulation (CA) in 25 patients (19 female) with FHF and to follow up with seventeen of these patients before and after liver transplantation. PATIENTS AND METHODS: The mean age was 33.8 years (range 14-56, SD 13.1 years). Cerebral hemodynamics was assessed by transcranial Doppler (TCD) bilateral recordings of cerebral blood velocity (CBv) in the middle cerebral arteries (MCA). RESULTS: CA was assessed based on the static CA index (SCAI), reflecting the effects of a 20-30 mmHg increase in mean arterial blood pressure on CBv induced with norepinephrine infusion. SCAI was estimated at four time points: pretransplant and on the 1st, 2nd and 3rd posttransplant days, showing a significant difference between pre- and posttransplant SCAI (p = 0.005). SCAI peaked on the third posttransplant day (p = 0.006). Categorical analysis of SCAI showed that for most patients, CA was reestablished on the second day posttransplant (SCAI > 0.6). CONCLUSIONS: These results suggest that CA impairment pretransplant and on the 1st day posttransplant was re-established at 48-72 h after transplantation. These findings can help to improve the management of this patient group during these specific phases, thereby avoiding neurological complications, such as brain swelling and intracranial hypertension.


Subject(s)
Hepatic Encephalopathy , Liver Failure, Acute , Liver Transplantation , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Liver Transplantation/adverse effects , Hepatic Encephalopathy/diagnostic imaging , Hepatic Encephalopathy/etiology , Liver Failure, Acute/diagnosis , Liver Failure, Acute/surgery , Liver Failure, Acute/complications , Homeostasis/physiology
4.
Cereb Circ Cogn Behav ; 5: 100191, 2023.
Article in English | MEDLINE | ID: mdl-38046105

ABSTRACT

Introduction: Arterial hypertrophy and remodeling are adaptive responses present in systemic arterial hypertension that can result in silent ischemia and neurodegeneration, compromising brain connections and cognitive performance (CP). However, CP is affected differently over time, so traditional screening methods may become less sensitive in assessing certain cognitive domains. The study aimed to evaluate whether cerebrovascular hemodynamic parameters can serve as a tool for cognitive screening in hypertensive without clinically manifest cognitive decline. Methods: Participants were allocated into groups: non-hypertensive (n = 30) [group 1], hypertensive with systolic blood pressure (SBP) < 140 and diastolic blood pressure (DBP) < 90 mmHg (n = 54) [group 2] and hypertensive with SBP ≥ 140 or DBP ≥ 90 (n = 31) [group 3]. Measurements of blood pressure and middle cerebral artery blood flow velocity were obtained from digital plethysmography and transcranial Doppler. For the cognitive assessment, the Mini Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA) and a broad neuropsychological battery were applied. Results: Patients in groups 2 and 3 show no significant differences in most of the clinical-epidemiological variables or pulsatility index (p = 0.361), however compared to group 1 and 2, patients in group 3 had greater resistance-area product [RAP] (1.7 [±0.7] vs. 1.2 [±0.2], p < 0.001). There was a negative correlation between RAP, episodic memory (r = -0.277, p = 0.004) and cognitive processing speed (r = -0.319, p = 0.001). Conclusion: RAP reflects the real cerebrovascular resistance, regardless of the direct action of antihypertensive on the microcirculation, and seems to be a potential alternative tool for cognitive screening in hypertensive.

6.
J Cereb Blood Flow Metab ; 43(11): 2008-2010, 2023 11.
Article in English | MEDLINE | ID: mdl-37632340

ABSTRACT

Cerebral perfusion pressure (CPP) is calculated as the difference between mean arterial blood pressure and mean intracranial pressure, being commonly applied in neurocritical care. This commentary discusses recent physiological advances in knowledge as well as bedside practice issues that in combination indicate considering CPP under this perspective may lead to inaccurate assumptions and potentially misleading decision making.


Subject(s)
Arterial Pressure , Cerebrovascular Circulation , Cerebrovascular Circulation/physiology , Arterial Pressure/physiology , Intracranial Pressure/physiology , Homeostasis/physiology , Blood Pressure/physiology
7.
medRxiv ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37292791

ABSTRACT

Background: Almost all biological and disease processes are influenced by circadian clocks and display ∼24-hour rhythms. Disruption of these rhythms may be an important novel risk factor for stroke. We evaluated the association between 24-h rest-activity rhythm measures, stroke risk, and major post-stroke adverse outcomes. Methods: In this cohort study, we examined ∼100,000 participants in the UK Biobank (44-79 years old; ∼57% females) who underwent an actigraphy (6-7 days) and 5-year median follow-up. We derived: (1) most active 10 hours activity counts ( M10 ) across the 24-h cycle and the timing of its midpoint ( M10 midpoint ); (2) the least active 5 hours counts ( L5 ) and its midpoint timing ( L5 midpoint ); (3) relative amplitude ( RA ) - (M10-L5)/(M10+L5); (4) interdaily stability (IS): stability and (5) intradaily variability (IV), fragmentation of the rhythm. Cox proportional hazard models were constructed for time to (i) incident stroke (n=1,652); and (ii) post-stroke adverse outcomes (dementia, depression, disability, or death). Results: Suppressed RA (lower M10 and higher L5) was associated with stroke risk after adjusting for demographics; the risk was highest in the lowest quartile [Q1] for RA (HR=1.62; 95% CI:1.36-1.93, p <0.001) compared to the top quartile [Q4]. Participants with later M10 midpoint timing (14:00-15:26, HR=1.26, CI:1.07-1.49, p =0.007) also had a higher risk for stroke than earlier (12:17-13:10) participants. A fragmented rhythm (IV) was also associated with a higher risk for stroke (Q4 vs. Q1; HR=1.27; CI:1.06-1.50, p =0.008), but differences in the stability of rhythms (IS) were not. Suppressed RA was associated with an increased risk of unfavorable post-stroke outcomes (Q1 vs. Q4; 1.78 [1.29-2.47]; p <0.001). All the associations were independent of age, sex, race, obesity, sleep disorders, cardiovascular diseases or risks, and other morbidity burdens. Conclusion: Suppressed 24-h rest-activity rhythm may be a risk factor for stroke and an early indicator of major post-stroke adverse outcomes.

8.
Clin Case Rep ; 11(5): e7189, 2023 May.
Article in English | MEDLINE | ID: mdl-37207085

ABSTRACT

Papillary thyroid carcinoma (PTC) primarily located in the pyramidal lobe of the thyroid gland is extremely rare, therefore the clinical and pathological features are not well understood. The authors describe a case of PTC of the pyramidal lobe, in a 77-year-old woman who underwent en bloc total thyroidectomy with pyramidal lobe, hyoid bone and cervical lymph node excision. In line with the present case, current literature reports a greater presence of worse prognostic factors, namely extrathyroidal extension, advanced T stage or presence of cervical lymph node metastasis. Recently, a new classification has been suggested-Upper Neck Papillary Thyroid Cancer (UPTC)-which encompasses these carcinomas, Delphi ganglion metastases and thyroglossal duct cyst carcinomas, with potential clinical and therapeutic implications, particularly the need for orthotopic thyroidectomy. Also, the complete excision of the pyramidal lobe during thyroidectomy may influence the success of radioactive iodine therapy and the patient's follow-up surveillance.

9.
Neurocrit Care ; 39(2): 399-410, 2023 10.
Article in English | MEDLINE | ID: mdl-36869208

ABSTRACT

BACKGROUND: Critical closing pressure (CrCP) and resistance-area product (RAP) have been conceived as compasses to optimize cerebral perfusion pressure (CPP) and monitor cerebrovascular resistance, respectively. However, for patients with acute brain injury (ABI), the impact of intracranial pressure (ICP) variability on these variables is poorly understood. The present study evaluates the effects of a controlled ICP variation on CrCP and RAP among patients with ABI. METHODS: Consecutive neurocritical patients with ICP monitoring were included along with transcranial Doppler and invasive arterial blood pressure monitoring. Internal jugular veins compression was performed for 60 s for the elevation of intracranial blood volume and ICP. Patients were separated in groups according to previous intracranial hypertension severity, with either no skull opening (Sk1), neurosurgical mass lesions evacuation, or decompressive craniectomy (DC) (patients with DC [Sk3]). RESULTS: Among 98 included patients, the correlation between change (Δ) in ICP and the corresponding ΔCrCP was strong (group Sk1 r = 0.643 [p = 0.0007], group with neurosurgical mass lesions evacuation r = 0.732 [p < 0.0001], and group Sk3 r = 0.580 [p = 0.003], respectively). Patients from group Sk3 presented a significantly higher ΔRAP (p = 0.005); however, for this group, a higher response in mean arterial pressure (change in mean arterial pressure p = 0.034) was observed. Exclusively, group Sk1 disclosed reduction in ICP before internal jugular veins compression withholding. CONCLUSIONS: This study elucidates that CrCP reliably changes in accordance with ICP, being useful to indicate ideal CPP in neurocritical settings. In the early days after DC, cerebrovascular resistance seems to remain elevated, despite exacerbated arterial blood pressure responses in efforts to maintain CPP stable. Patients with ABI with no need of surgical procedures appear to remain with more effective ICP compensatory mechanisms when compared with those who underwent neurosurgical interventions.


Subject(s)
Brain Injuries , Intracranial Hypertension , Humans , Intracranial Pressure/physiology , Blood Pressure/physiology , Arterial Pressure/physiology , Cerebrovascular Circulation/physiology
10.
Acta Med Port ; 36(3): 212-217, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36898208

ABSTRACT

The approach of surgical techniques has evolved significantly over the last decade, with natural orifice surgeries replacing traditional open approaches. In 2016, Angkoon Anuwong, in Thailand, demonstrated it was possible to perform thyroidectomies in a series of patients by a transoral endoscopic ap-proach - transoral endoscopy thyroidectomy vestibular approach (TOETVA) - with similar complication rates when compared to conventional surgeries. This transoral surgery has become a safe alternative with better cosmetic results, compared to conventional open-route procedures, like Kocher cervi-cotomy. Indeed, it is an option to surgically treat neoplastic and functional thyroid diseases. The technique is performed through a median incision in the oral vestibule, plus two bilateral incisions, followed by the insertion of three trocars, one centrally for a camera, and two laterally for working instruments. Although revolutionary, TOETVA has its technical limitations. Therefore, it is important to precisely define the preoperative eligibility criteria for this type of surgical approach. High-resolution ultrasound is the first imaging modality for the assessment of thyroid nodules, lymph node metastases and surgical field. The aim of this article is to outline the sonographic technique and the role of high-resolution ultrasound in the presurgical evaluation of TOETVA.


Subject(s)
Thyroid Nodule , Thyroidectomy , Humans , Endoscopy , Ultrasonography
11.
J Cereb Blood Flow Metab ; 43(6): 989-998, 2023 06.
Article in English | MEDLINE | ID: mdl-36722135

ABSTRACT

Dynamic cerebral autoregulation (dCA) in healthy young adults displays a daily variation. Whether the rhythm exists in patients with stroke is unknown. We studied 28 stroke patients (age: 26-83 years, 7 females) within 48 hours after thrombolysis. dCA was assessed 54 times in these patients during supine rest (twice in 26 and once in 2 patients): 9 assessments between 0-9AM, 12 between 9AM-2PM, 20 between 2-7PM, and 13 between 7PM-12AM. To estimate dCA, phase shifts between spontaneous oscillations of cerebral blood flow velocity (CBFV) in the middle cerebral artery and arterial blood pressure (BP) were obtained in four frequency bands: <0.05 Hz, 0.05-0.1 Hz, 0.1-0.2 Hz, and >0.2 Hz. CBFV-BP phase shifts at <0.05 Hz were significantly larger between 2-7PM, suggesting better dCA, than those at other times (p < 0.0001), and the daily rhythm was consistent for stroke and non-stroke sides. No significant rhythms were observed at higher frequencies (all p > 0.2). All results were independent of age, sex, stroke type and severity, and other cardiovascular conditions. dCA after stroke showed a daily rhythm, leading to a better regulation of CBFV at <0.05 Hz during the afternoon. The finding may have implications for daily activity management of stroke patients.


Subject(s)
Stroke , Female , Young Adult , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Blood Pressure/physiology , Arterial Pressure , Homeostasis/physiology , Cerebrovascular Circulation/physiology , Blood Flow Velocity/physiology
12.
J Clin Monit Comput ; 37(3): 753-760, 2023 06.
Article in English | MEDLINE | ID: mdl-36399214

ABSTRACT

Analysis of intracranial pressure waveforms (ICPW) provides information on intracranial compliance. We aimed to assess the correlation between noninvasive ICPW (NICPW) and invasively measured intracranial pressure (ICP) and to assess the NICPW prognostic value in this population. In this cohort, acute brain-injured (ABI) patients were included within 5 days from admission in six Intensive Care Units. Mean ICP (mICP) values and the P2/P1 ratio derived from NICPW were analyzed and correlated with outcome, which was defined as: (a) early death (ED); survivors on spontaneous breathing (SB) or survivors on mechanical ventilation (MV) at 7 days from inclusion. Intracranial hypertension (IHT) was defined by ICP > 20 mmHg. A total of 72 patients were included (mean age 39, 68% TBI). mICP and P2/P1 values were significantly correlated (r = 0.49, p < 0.001). P2/P1 ratio was significantly higher in patients with IHT and had an area under the receiving operator curve (AUROC) to predict IHT of 0.88 (95% CI 0.78-0.98). mICP and P2/P1 ratio was also significantly higher for ED group (n = 10) than the other groups. The AUROC of P2/P1 to predict ED was 0.71 [95% CI 0.53-0.87], and the threshold P2/P1 > 1.2 showed a sensitivity of 60% [95% CI 31-83%] and a specificity of 69% [95% CI 57-79%]. Similar results were observed when decompressive craniectomy patients were excluded. In this study, P2/P1 derived from noninvasive ICPW assessment was well correlated with IHT. This information seems to be as associated with ABI patients outcomes as ICP.Trial registration: NCT03144219, Registered 01 May 2017 Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT03144219 .


Subject(s)
Brain Injuries, Traumatic , Intracranial Hypertension , Adult , Humans , Brain , Intracranial Hypertension/diagnosis , Intracranial Pressure , Prognosis
13.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R216-R226, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36572556

ABSTRACT

Cerebral perfusion pressure (CPP) is normally expressed by the difference between mean arterial blood pressure (MAP) and intracranial pressure (ICP) but comparison of the separate contributions of MAP and ICP to human cerebral blood flow autoregulation has not been reported. In patients with acute brain injury (ABI), internal jugular vein compression (IJVC) was performed for 60 s. Dynamic cerebral autoregulation (dCA) was assessed in recordings of middle cerebral artery blood velocity (MCAv, transcranial Doppler), and invasive measurements of MAP and ICP. Patients were separated according to injury severity as having whole/undamaged skull, large fractures, or craniotomies, or following decompressive craniectomy. Glasgow coma score was not different for the three groups. IJVC induced changes in MCAv, MAP, ICP, and CPP in all three groups. The MCAv response to step changes in MAP and ICP expressed the dCA response to these two inputs and was quantified with the autoregulation index (ARI). In 85 patients, ARI was lower for the ICP input as compared with the MAP input (2.25 ± 2.46 vs. 3.39 ± 2.28; P < 0.0001), and particularly depressed in the decompressive craniectomy (DC) group (n = 24, 0.35 ± 0.62 vs. 2.21 ± 1.96; P < 0.0005). In patients with ABI, the dCA response to changes in ICP is less efficient than corresponding responses to MAP changes. These results should be taken into consideration in studies aimed to optimize dCA by manipulation of CPP in neurocritical patients.


Subject(s)
Brain Injuries , Intracranial Pressure , Humans , Intracranial Pressure/physiology , Blood Pressure/physiology , Ultrasonography, Doppler, Transcranial , Homeostasis/physiology , Cerebrovascular Circulation/physiology
14.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 89-102, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35298842

ABSTRACT

This study was carried out to evaluate the use of tannin extract from Acacia mearnsii as a strategy to reduce methane (CH4 ) in two distinct cattle genotypes and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. Four Nellore (Bos indicus) and four Holstein (Bos taurus) dry cows fitted with rumen cannula were assigned to two 4 × 4 Latin square design, in a 2 × 4 factorial arrangement, where each genotype represented a square receiving four tannin levels (commercial extract of A. mearnsii) in the diet (0%, 0.5%, 1.0% and 1.5% of dry matter). Tannin levels used did not cause a reduction in feed intake or rumen passage rate for both genotypes (p > 0.05), although there was a linear reduction in the degradation rate and ruminal disappearance of diet (p < 0.05). The increase in tannin levels reduced the amount of entodiniomorph protozoa in the Nellore cattle (p < 0.05). There was no change in N retention or microbial efficiency (p > 0.05), despite the linear reduction of nutrient digestibility and the synthesis of microbial nitrogen (p < 0.05). The ruminal CH4 production was reduced (p < 0.05) without reducing the short-chain fatty acid production. The threshold of 0.72% of tannin in the diet was estimated as the starting point for the reduction of ruminal CH4 production with long-term efficacy. Therefore, the use of low levels of tannin extract from A. mearnsii is a potential option to manipulate rumen fermentation in Nellore and Holstein cattle and needs to be further investigated.


Subject(s)
Lactation , Milk , Female , Cattle , Animals , Milk/metabolism , Tannins/pharmacology , Fermentation , Methane , Digestion , Diet/veterinary , Plant Extracts/pharmacology , Rumen/metabolism , Animal Feed/analysis
15.
J Cereb Blood Flow Metab ; 43(1): 3-25, 2023 01.
Article in English | MEDLINE | ID: mdl-35962478

ABSTRACT

Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.


Subject(s)
Brain , Reproducibility of Results , Brain/blood supply
16.
Clin Neurol Neurosurg ; 220: 107333, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35816824

ABSTRACT

OBJECTIVES: This study aimed to investigate the accuracy of TCS combined with the Sniffin' sticks olfactory test (SST-16) for differentiation between idiopathic PD patients and healthy controls compared to that of 99 mTc-TRODAT-1 SPECT (TRODAT). METHODS: A cross-sectional study included PD patients diagnosed in accordance with United Kingdom PD Society Brain Bank criteria and a control group of age and sex- matched healthy subjects. All patients were examined by a movement disorder specialist and underwent brain SPECT using TRODAT, TCS examination and SST-16 test. Receiver Operating Characteristic (ROC) curves were used to calculate cut-off points for TCS, striatal TRODAT binding potentials and SST-16. The area under the ROC curve determined the diagnostic accuracy of the method. RESULTS: Twenty patients with PD (13 males and 7 females) and nine healthy subjects were included. Median age of PD onset was 56.5 years with median disease duration of 5 years. A larger substantia nigra (SN) echogenic area was observed in the PD group (p = 0.013). SN echogenic area cut-off point of 0.22 cm2 was obtained from a ROC curve for PD diagnosis. Considering this cut-off point, TCS diagnostic accuracy was estimated at 79.2% for PD diagnosis. The cut-off value of 0.90 for striatal TRODAT binding was associated with 99% diagnostic accuracy for the diagnosis of PD. SST-16 values equal or less than 9 points showed an 85.8% diagnostic accuracy for PD diagnosis. Combination of both SST-16 and TCS improved the diagnostic accuracy to 95% for PD diagnosis. CONCLUSION: Combined SST-16 and TCS assessment was indicated as accurate for distinguishing PD patients from healthy controls. The diagnostic accuracy of TCS combined with SST-16 for differentiation between idiopathic PD patients and healthy controls is similar to that of SPECT TRODAT.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Ultrasonography, Doppler, Transcranial/methods
17.
Arq. neuropsiquiatr ; 80(4): 344-352, Apr. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1374468

ABSTRACT

ABSTRACT Background: Transcranial Doppler has been tested in the evaluation of cerebral hemodynamics as a non-invasive assessment of intracranial pressure (ICP), but there is controversy in the literature about its actual benefit and usefulness in this situation. Objective: To investigate cerebral blood flow assessed by Doppler technique and correlate with the variations of the ICP in the acute phase of intracranial hypertension in an animal model. Methods: An experimental animal model of intracranial hypertension was used. The experiment consisted of two groups of animals in which intracranial balloons were implanted and inflated with 4 mL (A) and 7 mL (B) for controlled simulation of different volumes of hematoma. The values of ICP and Doppler parameters (systolic [FVs], diastolic [FVd], and mean [FVm] cerebral blood flow velocities and pulsatility index [PI]) were collected during the entire procedure (before and during hematoma simulations and venous hypertonic saline infusion intervention). Comparisons between Doppler parameters and ICP monitoring were performed. Results: Twenty pigs were studied, 10 in group A and 10 in group B. A significant correlation between PI and ICP was obtained, especially shortly after abrupt elevation of ICP. There was no correlation between ICP and FVs, FVd or FVm separately. There was also no significant change in ICP after intravenous infusion of hypertonic saline solution. Conclusions: These results demonstrate the potential of PI as a parameter for the evaluation of patients with suspected ICP elevation.


RESUMO Antecedentes: O Doppler transcraniano (DTC) é uma técnica não invasiva para a avaliação da hemodinâmica cerebral, porém existem controvérsias na literatura sobre sua aplicabilidade preditiva em situações de elevada pressão intracraniana (PIC). Objetivo: Investigar o fluxo sanguíneo cerebral pelo DTC e correlacioná-lo com as variações da PIC na fase aguda da hipertensão intracraniana em modelo animal. Métodos: Dois grupos de animais (suínos) foram submetidos a hipertensão intracraniana secundária à indução de diferentes volumes de hematoma, por meio da insuflação de balão intracraniano controlado com 4 e 7 mL de solução salina fisiológica (grupos A e B, respectivamente). Em seguida, administrou-se infusão venosa de solução salina hipertônica (SSH 3%). Foram coletados os valores dos parâmetros de PIC e DTC (velocidade sistólica [FVs], diastólica [FVd] e média [FVm] do fluxo sanguíneo cerebral), bem como o índice de pulsatilidade (IP). Comparações entre os parâmetros do DTC e o monitoramento da PIC foram realizadas. Resultados: Vinte porcos foram estudados, dez no grupo A e dez no grupo B. Correlação significativa entre IP e PIC foi obtida, principalmente logo após a elevação abrupta da PIC. Não houve correlação entre PIC e FVs, FVd ou FVm separadamente. Também não houve alteração significativa na PIC após a infusão de SSH. Conclusões: Esses resultados demonstram o potencial do IP como um bom parâmetro para a avaliação de pacientes com suspeita de elevação da PIC.

18.
Arq Neuropsiquiatr ; 80(4): 344-352, 2022 04.
Article in English | MEDLINE | ID: mdl-35195225

ABSTRACT

BACKGROUND: Transcranial Doppler has been tested in the evaluation of cerebral hemodynamics as a non-invasive assessment of intracranial pressure (ICP), but there is controversy in the literature about its actual benefit and usefulness in this situation. OBJECTIVE: To investigate cerebral blood flow assessed by Doppler technique and correlate with the variations of the ICP in the acute phase of intracranial hypertension in an animal model. METHODS: An experimental animal model of intracranial hypertension was used. The experiment consisted of two groups of animals in which intracranial balloons were implanted and inflated with 4 mL (A) and 7 mL (B) for controlled simulation of different volumes of hematoma. The values of ICP and Doppler parameters (systolic [FVs], diastolic [FVd], and mean [FVm] cerebral blood flow velocities and pulsatility index [PI]) were collected during the entire procedure (before and during hematoma simulations and venous hypertonic saline infusion intervention). Comparisons between Doppler parameters and ICP monitoring were performed. RESULTS: Twenty pigs were studied, 10 in group A and 10 in group B. A significant correlation between PI and ICP was obtained, especially shortly after abrupt elevation of ICP. There was no correlation between ICP and FVs, FVd or FVm separately. There was also no significant change in ICP after intravenous infusion of hypertonic saline solution. CONCLUSIONS: These results demonstrate the potential of PI as a parameter for the evaluation of patients with suspected ICP elevation.


Subject(s)
Intracranial Hypertension , Intracranial Pressure , Animals , Cerebrovascular Circulation/physiology , Disease Models, Animal , Hematoma , Hemodynamics , Humans , Intracranial Hypertension/diagnostic imaging , Intracranial Pressure/physiology , Swine , Ultrasonography, Doppler, Transcranial/methods
19.
J Cereb Blood Flow Metab ; 42(3): 430-453, 2022 03.
Article in English | MEDLINE | ID: mdl-34515547

ABSTRACT

Acute stroke is associated with high morbidity and mortality. In the last decades, new therapies have been investigated with the aim of improving clinical outcomes in the acute phase post stroke onset. However, despite such advances, a large number of patients do not demonstrate improvement, furthermore, some unfortunately deteriorate. Thus, there is a need for additional treatments targeted to the individual patient. A potential therapeutic target is interventions to optimize cerebral perfusion guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). This narrative led to the development of the INFOMATAS (Identifying New targets FOr Management And Therapy in Acute Stroke) project, designed to foster interventions directed towards understanding and improving hemodynamic aspects of the cerebral circulation in acute cerebrovascular disease states. This comprehensive review aims to summarize relevant studies on assessing dCA in patients suffering acute ischemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage. The review will provide to the reader the most consistent findings, the inconsistent findings which still need to be explored further and discuss the main limitations of these studies. This will allow for the creation of a research agenda for the use of bedside dCA information for prognostication and targeted perfusion interventions.


Subject(s)
Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Homeostasis/physiology , Stroke/physiopathology , Brain/blood supply , Humans
20.
J Cereb Blood Flow Metab ; 42(3): 454-470, 2022 03.
Article in English | MEDLINE | ID: mdl-34304623

ABSTRACT

Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.


Subject(s)
Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Homeostasis/physiology , Ischemic Stroke/physiopathology , Neuroimaging/methods , Blood Pressure/physiology , Brain/blood supply , Brain/diagnostic imaging , Brain/metabolism , Humans , Ischemic Stroke/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...