Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 14406, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594995

ABSTRACT

Maternal physical activity attenuates cardiorespiratory dysfunctions and transcriptional alterations presented by the carotid body (CB) of rats. Rats performed physical activity and were classified as inactive/active. During gestation and lactation, mothers received either normoprotein (NP-17% protein) or low-protein diet (LP-8% protein). In offspring, biochemical serum levels, respiratory parameters, cardiovascular parameters and the mRNA expression of hypoxia-inducible factor 1-alpha (HIF-1α), tyrosine hydroxylase (TH) and purinergic receptors were evaluate. LP-inactive pups presented lower RF from 1st to 14th days old, and higher RF at 30 days than did NP-inactive and NP-active pups. LP-inactive pups presented with reduced serum protein, albumin, cholesterol and triglycerides levels and an increased fasting glucose level compared to those of NP-inactive and NP-active groups. LP and LP-inactive animals showed an increase in the cardiac variability at the Low-Frequency bands, suggesting a major influence of sympathetic nervous activity. In mRNA analyses, LP-inactive animals showed increased HIF-1α expression and similar expression of TH and purinergic receptors in the CB compared to those of NP groups. All these changes observed in LP-inactive pups were reversed in the pups of active mothers (LP-active). Maternal physical activity is able to attenuate the metabolic, cardiorespiratory and HIF-1α transcription changes induced by protein malnutrition.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Malnutrition/prevention & control , Maternal Nutritional Physiological Phenomena/genetics , Prenatal Exposure Delayed Effects , Animals , Cardiorespiratory Fitness/physiology , Cardiovascular System/physiopathology , Carotid Body/physiopathology , Diet, Protein-Restricted , Female , Gene Expression Regulation/genetics , Humans , Lactation/physiology , Malnutrition/genetics , Malnutrition/physiopathology , Physical Conditioning, Animal , Pregnancy , Rats , Rats, Wistar , Sympathetic Nervous System/physiopathology
2.
Clin Exp Pharmacol Physiol ; 43(12): 1177-1184, 2016 12.
Article in English | MEDLINE | ID: mdl-27612187

ABSTRACT

Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.


Subject(s)
Diet, Protein-Restricted/adverse effects , Hypertension/metabolism , Medulla Oblongata/metabolism , Oxidative Stress/physiology , Prenatal Exposure Delayed Effects/metabolism , Transcription, Genetic/physiology , Animals , Female , Hypertension/etiology , Male , Maternal Exposure/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Random Allocation , Rats , Rats, Wistar
3.
Life Sci ; 145: 42-50, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26687449

ABSTRACT

AIMS: The present study investigates the effects of neonatal serotonin modulation in female rats on cardiac parameters related to hemodynamics and oxidative metabolism in the mature animal. MAIN METHODS: Female Wistar rat pups were administered daily subcutaneous injections of fluoxetine (Fx-treated group) or vehicle solution (Ct-group) from the 1st to 21st day of life. At 60days of age, animals from both groups were either used for cardiovascular evaluation or sacrificed for tissue collection for biochemical assays. KEY FINDINGS: We found that body weight in the Fx-treated group was less than that in the control. When analyzing hemodynamic parameters (i.e., arterial blood pressure, heart rate-HR, sympathetic and vagal tonus, or intrinsic HR), we did not observe significant difference in the Fx-treated group. Evaluating oxidative stress in brainstem and heart by measuring carbonyl content and malondialdehyde-MDA formation, we observe a decrease in carbonyl content only in the Fx-treated group (60.3%, in brainstem; 58.2%, in heart), without difference in the MDA levels. This observation is consonant with an increase in superoxide dismutase-SOD and catalase-CAT activity in brainstem and heart in the Fx-treated group (SOD: 82.7% and CAT: 23.7 in brainstem; SOD: 60.6%, and CAT: 40.7 in heart), with no changes in glutathione S-transferase activity and reduced glutathione levels. With regard to oxidative metabolism markers, citrate synthase activity was higher in brainstem in the Fx-treated group (20%). SIGNIFICANCE: Our data suggest that serotonin modulation by Fx-treatment at an early age does not induce hemodynamic alteration, although it modulates oxidative metabolism in cardiac-related tissues.


Subject(s)
Fluoxetine/pharmacology , Heart/physiology , Hemodynamics , Oxidative Stress , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/metabolism , Animals , Animals, Newborn , Catalase/metabolism , Female , Fluoxetine/administration & dosage , Glutathione/metabolism , Glutathione Transferase/metabolism , Heart/drug effects , Hemodynamics/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/administration & dosage , Superoxide Dismutase/metabolism
4.
J Nutr ; 145(5): 907-14, 2015 May.
Article in English | MEDLINE | ID: mdl-25934662

ABSTRACT

BACKGROUND: Maternal protein restriction in rats increases the risk of adult offspring arterial hypertension through unknown mechanisms. OBJECTIVES: The aims of the study were to evaluate the effects of a low-protein (LP) diet during pregnancy and lactation on baseline sympathetic and respiratory activities and peripheral chemoreflex sensitivity in the rat offspring. METHODS: Wistar rat dams were fed a control [normal-protein (NP); 17% protein] or an LP (8% protein) diet during pregnancy and lactation, and their male offspring were studied at 30 d of age. Direct measurements of baseline arterial blood pressure (ABP), heart rate (HR), and respiratory frequency (Rf) as well as peripheral chemoreflex activation (potassium cyanide: 0.04%) were recorded in pups while they were awake. In addition, recordings of the phrenic nerve (PN) and thoracic sympathetic nerve (tSN) activities were obtained from the in situ preparations. Hypoxia-inducible factor 1α (HIF-1α) expression was also evaluated in carotid bifurcation through a Western blotting assay. RESULTS: At 30 d of age, unanesthetized LP rats exhibited enhanced resting Rf (P = 0.001) and similar ABP and HR compared with the NP rats. Despite their similar baseline ABP values, LP rats exhibited augmented low-frequency variability (∼91%; P = 0.01). In addition, the unanesthetized LP rats showed enhanced pressor (P = 0.01) and tachypnoeic (P = 0.03) responses to peripheral chemoreflex activation. The LP rats displayed elevated baseline tSN activity (∼86%; P = 0.02) and PN burst frequency (45%; P = 0.01) and amplitude (53%; P = 0.001) as well as augmented sympathetic (P = 0.01) and phrenic (P = 0.04) excitatory responses to peripheral chemoreflex activation compared with the NP group. Furthermore, LP rats showed an increase of ∼100% in HIF-1α protein density in carotid bifurcation compared with NP rats. CONCLUSION: Sympathetic-respiratory overactivity and amplified peripheral chemoreceptor responses, potentially through HIF-1α-dependent mechanisms, precede the onset of hypertension in juvenile rats exposed to protein undernutrition during gestation and lactation.


Subject(s)
Chemoreceptor Cells/metabolism , Diet, Protein-Restricted/adverse effects , Maternal Nutritional Physiological Phenomena , Peripheral Nervous System/physiopathology , Prehypertension/physiopathology , Respiratory System/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Birth Weight , Carotid Artery, Common/metabolism , Carotid Artery, Common/pathology , Carotid Artery, Common/physiopathology , Chemoreceptor Cells/pathology , Female , Fetal Development , Fetal Growth Retardation/etiology , Fetal Growth Retardation/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactation , Male , Peripheral Nervous System/pathology , Phrenic Nerve/pathology , Phrenic Nerve/physiopathology , Pregnancy , Prehypertension/etiology , Prehypertension/metabolism , Prehypertension/pathology , Rats, Wistar , Respiratory System/pathology , Sympathetic Nervous System/pathology , Thoracic Nerves/pathology , Thoracic Nerves/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...