Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35216061

ABSTRACT

Listeria monocytogenes (Lm) bacterial ghosts (LMGs) were produced by the minimum inhibitory concentration (MIC) of HCl, H2SO4, and NaOH. Acid and alkali effects on the LMGs were compared by in vitro and in vivo analyses. Scanning electron microscope showed that all chemicals form lysis pores on the Lm cell envelopes. Real-time qPCR revealed a complete absence of genomic DNA in HCl- and H2SO4-induced LMGs but not in NaOH-induced LMGs. HCl-, H2SO4- and NaOH-induced LMGs showed weaker or missing protein bands on SDS-PAGE gel when compared to wild-type Lm. Murine macrophages exposed to the HCl-induced LMGs showed higher cell viability than those exposed to NaOH-induced LMGs or wild-type Lm. The maximum level of cytokine expression (TNF-α, iNOS, IFN-γ, and IL-10 mRNA) was observed in the macrophages exposed to NaOH-induced LMGs, while that of IL-1ß mRNA was observed in the macrophages exposed to HCl-induced LMGs. To investigate LMGs as a vaccine candidate, mice were divided into PBS buffer-injected, HCl- and NaOH-induced LMGs immunized groups. Mice vaccinated with HCl- and NOH-induced LMGs, respectively, significantly increased in specific IgG antibodies, bactericidal activities of serum, and CD4+ and CD8+ T-cell population. Antigenic Lm proteins reacted with antisera against HCl- and NOH-induced LMGs, respectively. Bacterial loads in HCl- and NaOH-induced LMGs immunized mice were significantly lower than PBS-injected mice after virulent Lm challenges. It suggested that vaccination with LMGs induces both humoral and cell-mediated immune responses and protects against virulent challenges.


Subject(s)
Hydrochloric Acid/immunology , Immunity, Cellular/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Sodium Hydroxide/immunology , Vaccines/immunology , Animals , Antibodies, Bacterial/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cytokines/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Rats
2.
Viruses ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: mdl-34960707

ABSTRACT

A Korean isolate of the sacbrood virus infecting Apis cerana (AcSBV-Kor) is the most destructive honeybee virus, causing serious economic damage losses in Korean apiculture. To address this, here, we attempted to develop an assay for the rapid detection of AcSBV-Kor based on immunochromatographic detection of constituent viral proteins. Genes encoding VP1 and VP2 proteins of AcSBV-Kor were cloned into an expression vector (pET-28a) and expressed in Escherichia coli BL21(DE3). During purification, recombinant VP1 (rVP1) and VP2 (rVP2) proteins were found in the insoluble fraction, with a molecular size of 26.7 and 24.9 kDa, respectively. BALB/c mice immunized with the purified rVP1 and rVP2 produced polyclonal antibodies (pAbs) such as pAb-rVP1 and pAb-rVP2. Western blot analysis showed that pAb-rVP1 strongly reacted with the homologous rVP1 but weakly reacted with heterologous rVP2. However, pAb-rVP2 strongly reacted not only with the homologous rVP2 but also with the heterologous rVP1. Spleen cells of the immunized mice fused with SP2/0-Ag14 myeloma cells produced monoclonal antibodies (mAbs) such as mAb-rVP1-1 and mAb-rVP2-13. Western blot analysis indicated that pAb-rVP1, pAb-rVP2, mAb-rVP1-1, and mAb-rVP2-13 reacted with AcSBV-infected honeybees and larvae as well as the corresponding recombinant proteins. These antibodies were then used in the development of a rapid immunochromatography (IC) strip assay kit with colloidal gold coupled to pAb-rVP1 and pAb-rVP2 at the conjugate pad and mAb-rVP1-1 and mAb-rVP2-13 at the test line. One antibody pair, pAb-rVP1/mAb-VP1-1, showed positive reactivity as low as 1.38 × 103 copies, while the other pair, pAb-rVP2/mAb-VP2-13, showed positive reactivity as low as 1.38 × 104 copies. Therefore, the antibody pair pAb-rVP1/mAb-VP1-1 was selected as a final candidate for validation. To validate the detection of AcSBV, the IC strip tests were conducted with 50 positive and 50 negative samples and compared with real-time PCR tests. The results confirm that the developed IC assay is a sufficiently sensitive and specific detection method for user-friendly and rapid detection of AcSBV.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Bees/virology , RNA Viruses/immunology , RNA Viruses/isolation & purification , Viral Structural Proteins/immunology , Animals , Escherichia coli/genetics , Immunoassay , Mice , Mice, Inbred BALB C , Reagent Strips , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Sensitivity and Specificity , Viral Structural Proteins/genetics , Viral Structural Proteins/isolation & purification
3.
Molecules ; 23(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453560

ABSTRACT

Identification of medicinal plants and naturally derived compounds as new natural antioxidant and antibacterial sources for topical acne treatment has long been important. To determine anti-Propionibacterium acnes activity and in vitro antioxidant activities, Sanguisorba officinalis L. root (SOR) was extracted with cold water (CWE), hot water (HWE), and methanol (ME), and each extract was fractionated successively with hexane, ethyl acetate (EA), and butanol to determine whether the activities could be attributed to the total phenolic, flavonoid, terpenoid, and condensed tannin contents. Pearson's correlation coefficients were analyzed between the respective variables. The SOR CWE, HWE, ME, and their respective EA fractions showed anti-P. acnes activity based on the paper disc diffusion method on agar plates, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC). The MIC against P. acnes had a moderate (+) correlation with the total phenolic content, but not with the other measures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity (SC) had a strong (⁻) correlation with the total phenolic content and a moderate (⁻) correlation with the total flavonoid content. The total antioxidant capacity had a strong (+) correlation with the condensed tannin content. Linoleic acid peroxidation inhibition had a strong (⁻) correlation with the total phenolic content. To elucidate the major active phytochemicals in the CWE-EA, HWE-EA, and ME-EA fractions, high performance liquid chromatography-ultraviolet (HPLC-UV) and ultra high performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) were performed. The HPLC-UV analysis showed the presence of nine compounds in common (arjunic acid and/or euscaphic acid, gallic acid, kaempferol, caffeic acid, ferulic acid, tannic acid, and coumarin, quercetin). The UHPLC-QTOF-MS analysis showed the presence of nine compounds in common (gallic acid; caffeic acid; umbelliferone; arjunic acid, euscaphic acid, and/or tormentic acid; pomolic acid; rosamultic acid; and benzoic acid). When standards of the identified phytochemicals were tested against the same bacterium, quercetin, coumarin, and euscaphic acid showed antibacterial activity against P. acnes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Roots/chemistry , Propionibacterium acnes/drug effects , Sanguisorba/chemistry , Acetates/chemistry , Cold Temperature , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Hot Temperature , Methanol/chemistry , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Water/chemistry
4.
PLoS One ; 12(9): e0185488, 2017.
Article in English | MEDLINE | ID: mdl-28961267

ABSTRACT

Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG) was generated based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH). Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7) exposed to PBS buffer (98.1%), the macrophages exposed to formalin-killed inactivated cells (FKC), live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1ß) and factor (iNOS), anti-inflammatory cytokine (IL-10) and dual activities (IL-6) in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.


Subject(s)
Bacterial Vaccines/administration & dosage , Cytokines/metabolism , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium/immunology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/blood , Bacterial Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cytokines/genetics , Inflammation Mediators/metabolism , Mice , RNA, Messenger/genetics , Rats , Salmonella Infections, Animal/immunology
5.
Int J Mol Sci ; 17(11)2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27854308

ABSTRACT

Acellular bacterial ghosts (BGs) are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs) were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH), acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS) extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1ß and iNOS), anti-inflammatory cytokine (IL-10), and dual activities (IL-6) in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning electron microscopy showed the formation of trans-membrane lysis tunnel structures in the NaOH-induced VPGs. SDS-PAGE and agarose gel electrophoresis also confirmed that cytoplasmic proteins and genomic DNA released from the VPGs to culture medium through the lysis tunnel structures. Taken together, all these data indicate that the NaOH-induced VPGs show the potency of a safe, economical, and effective inactivated bacterial vaccine candidate.


Subject(s)
Cell Membrane/chemistry , DNA, Bacterial/metabolism , Macrophages/drug effects , Sodium Hydroxide/pharmacology , Acetic Acid/pharmacology , Animals , Boric Acids/pharmacology , Cell Line , Cell Membrane/immunology , Cell Survival/drug effects , Citric Acid/pharmacology , Gene Expression , Hydrochloric Acid/pharmacology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Limulus Test , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Macrophages/cytology , Macrophages/immunology , Maleates/pharmacology , Mice , Microbial Sensitivity Tests , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Sulfuric Acids/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vibrio parahaemolyticus/chemistry , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL