Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 32(11): e13162, 2022 11.
Article in English | MEDLINE | ID: mdl-36437676

ABSTRACT

The use of household cleaning products can result in exposure to potentially hazardous volatile and semi-volatile organic compounds (VOCs and SVOCs). "Green" cleaning products have become increasingly available, but there is no official "green" standard, and it is difficult for consumers to know what chemicals they may be exposed to while cleaning. We measured air concentrations of 46 VOCs and SVOCs of concern released from conventional and "green" cleaning products during both real-world household cleaning and a controlled chamber environment, with a focus on chemicals that might increase women's risk of breast cancer, including possible carcinogens, reproductive/developmental toxicants, or endocrine disruptors. Air samples were analyzed using gas chromatography-mass spectrometry and high-performance liquid chromatography. First, in a study of 50 women cleaning their own homes using either conventional or "green" cleaning products, we recorded the products used and collected air samples from the breathing zone to determine whether specific products or types of products were associated with increased concentrations of specific VOCs and SVOCs. The results showed that women who used conventional bleach products, disinfecting wipes, and dish soap had higher breathing zone air concentrations of several VOCs, including chloroform, carbon tetrachloride, hexaldahyde, and 1,4-dioxane, than women who did not use these products. While fewer "green" products were associated with increases in VOC air concentrations, use of "green" all-purpose cleaners was associated with increases in air concentrations of some fragrance chemicals of concern. In the laboratory, we then selected 9 of the most common conventional products and 7 "green" products used in the in-home study for measurement of the same VOCs using a continuous stirred cylindrical flow-through chamber. We found that 75% of the highest VOC emissions were emitted by conventional cleaning products, but we also identified VOC emissions of concern from green products. VOC emissions in the chamber largely agreed with the modeled associations from real-world cleaning.


Subject(s)
Air Pollution, Indoor , Volatile Organic Compounds , Female , Humans , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Gas Chromatography-Mass Spectrometry
2.
Environ Health Perspect ; 129(9): 97001, 2021 09.
Article in English | MEDLINE | ID: mdl-34468180

ABSTRACT

BACKGROUND: Household cleaning products may be a significant source of chemical exposures, including carcinogens and suspected endocrine disruptors. OBJECTIVES: We characterized exposures during routine household cleaning and tested an intervention to reduce exposures to cleaning product chemicals. METHODS: The Lifting Up Communities with Interventions and Research (LUCIR) Study is a youth-led, community-based intervention project. Youth researchers conducted personal air monitoring with 50 Latina women while they cleaned their homes with their regular cleaning products (preintervention visit) and then 1 week later while they used "green" cleaning products provided by the study (postintervention visit). Air samples were analyzed for volatile and semivolatile organic compounds using gas chromatography-mass spectrometry and high-performance liquid chromatography. We compared pre- and postintervention air concentrations of 47 chemicals of concern, selected because they were on California's Proposition 65 list of carcinogens or reproductive/developmental toxicants or were suspected endocrine disruptors. Youth researchers were integrally involved in the study design, data collection, interpretation, and dissemination of findings. RESULTS: We observed statistically significant decreases in air concentrations of 17 chemicals of concern when participants switched to green cleaning products, including decreases in geometric mean concentrations of 1,4-dioxane (-46.4%), chloroform (-86.7%), benzene (-24.8%), naphthalene (-40.3%), toluene (-24.2%), and hexane (-35.5%). We observed significant increases in air concentrations of three fragrance compounds: the plant-derived terpene, beta-myrcene (221.5%), and the synthetic musks celestolide (31.0%) and galaxolide (79.6%). Almost all participants (98%) said the replacement products worked as well as their original products, and 90% said that they would consider buying the replacement products in the future. DISCUSSION: This study demonstrates that choosing cleaning products that are marketed as green may reduce exposure to several carcinogens and endocrine disruptors. Future studies should determine whether use of unscented green products would further reduce exposure to terpenes and musks. https://doi.org/10.1289/EHP8831.


Subject(s)
Endocrine Disruptors , Hazardous Substances , Adolescent , Female , Gas Chromatography-Mass Spectrometry , Hispanic or Latino , Humans , Organic Chemicals
3.
Article in English | MEDLINE | ID: mdl-33440892

ABSTRACT

Air pollution is a major contributor to human morbidity and mortality, potentially exacerbated by COVID-19, and a threat to planetary health. Participatory research, with a structural violence framework, illuminates exposure inequities and refines mitigation strategies. Home to profitable oil and shipping industries, several census tracts in Richmond, CA are among the most heavily impacted by aggregate burdens statewide. Formally trained researchers from the Center for Environmental Research and Children's Health (CERCH) partnered with the RYSE youth justice center to conduct youth participatory action research on air quality justice. Staff engaged five youth researchers in: (1) collaborative research using a network of passive air monitors to quantify neighborhood disparities in nitrogen dioxide (NO2) and sulfur dioxide (SO2), noise pollution and community risk factors; (2) training in environmental health literacy and professional development; and (3) interpretation of findings, community outreach and advocacy. Inequities in ambient NO2, but not SO2, were observed. Census tracts with higher Black populations had the highest NO2. Proximity to railroads and major roadways were associated with higher NO2. Greenspace was associated with lower NO2, suggesting investment may be conducive to improved air quality, among many additional benefits. Youth improved in measures of empowerment, and advanced community education via workshops, Photovoice, video, and "zines".


Subject(s)
Air Pollutants , Air Pollution , Community Participation , Health Status Disparities , Adolescent , Air Pollution/analysis , COVID-19 , California , Child , Environmental Exposure/analysis , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Social Justice , Sulfur Dioxide/analysis
4.
Sci Total Environ ; 652: 1022-1029, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30380470

ABSTRACT

Personal exposure to pesticides has not been well characterized, especially among adolescents. We used silicone wristbands to assess pesticide exposure in 14 to 16 year old Latina girls (N = 97) living in the agricultural Salinas Valley, California, USA and enrolled in the COSECHA (CHAMACOS of Salinas Examining Chemicals in Homes and Agriculture) Study, a youth participatory action study in an agricultural region of California. We determined pesticide concentrations (ng/g/day) in silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry to determine the presence or absence of over 1500 chemicals. Predictors of pesticide detections and concentrations were identified using logistic regression, Wilcoxon rank sum tests, and Tobit regression models. The most frequently detected pesticides in wristbands were fipronil sulfide (87%), cypermethrin (56%), dichlorodiphenyldichloroethylene (DDE) (56%), dacthal (53%), and trans-permethrin (52%). Living within 100 m of active agricultural fields, having carpeting in the home, and having an exterminator treat the home in the past six months were associated with higher odds of detecting certain pesticides. Permethrin concentrations were lower for participants who cleaned their homes daily (GM: 1.9 vs. 6.8 ng/g/day, p = 0.01). In multivariable regression models, participants with doormats in the entryway of their home had lower concentrations (p < 0.05) of cypermethrin (87%), permethrin (99%), fipronil sulfide (69%) and DDE (75%). The results suggest that both nearby agricultural pesticide use and individual behaviors are associated with pesticide exposures.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , Occupational Exposure/analysis , Pesticides/analysis , Adolescent , Agriculture , California/ethnology , Environmental Exposure/analysis , Farmers , Female , Hispanic or Latino , Humans , Silicones
SELECTION OF CITATIONS
SEARCH DETAIL
...