Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 19(1): 112, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30115128

ABSTRACT

BACKGROUND: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome. RESULTS: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region. CONCLUSIONS: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.


Subject(s)
Agriculture , Genome, Plant , Optical Phenomena , Physical Chromosome Mapping/methods , Triticum/genetics , Centromere/metabolism , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Plant/genetics , Fructans/analysis , Seeds/genetics
2.
BMC Genomics ; 18(1): 284, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28388878

ABSTRACT

BACKGROUND: Climatic and edaphic conditions over geological timescales have generated enormous diversity of adaptive traits and high speciation within the genus Eucalyptus (L. Hér.). Eucalypt species occur from high rainfall to semi-arid zones and from the tropics to latitudes as high as 43°S. Despite several morphological and metabolomic characterizations, little is known regarding gene expression differences that underpin differences in tolerance to environmental change. Using species of contrasting taxonomy, morphology and physiology (E. globulus and E. cladocalyx), this study combines physiological characterizations with 'second-generation' sequencing to identify key genes involved in eucalypt responses to medium-term water limitation. RESULTS: One hundred twenty Million high-quality HiSeq reads were created from 14 tissue samples in plants that had been successfully subjected to a water deficit treatment or a well-watered control. Alignment to the E. grandis genome saw 23,623 genes of which 468 exhibited differential expression (FDR < 0.01) in one or both ecotypes in response to the treatment. Further analysis identified 80 genes that demonstrated a significant species-specific response of which 74 were linked to the 'dry' species E. cladocalyx where 23 of these genes were uncharacterised. The majority (approximately 80%) of these differentially expressed genes, were expressed in stem tissue. Key genes that differentiated species responses were linked to photoprotection/redox balance, phytohormone/signalling, primary photosynthesis/cellular metabolism and secondary metabolism based on plant metabolic pathway network analysis. CONCLUSION: These results highlight a more definitive response to water deficit by a 'dry' climate eucalypt, particularly in stem tissue, identifying key pathways and associated genes that are responsible for the differences between 'wet' and 'dry' climate eucalypts. This knowledge provides the opportunity to further investigate and understand the mechanisms and genetic variation linked to this important environmental response that will assist with genomic efforts in managing native populations as well as in tree improvement programs under future climate scenarios.


Subject(s)
Droughts , Eucalyptus/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcriptome , Computational Biology/methods , Ecotype , Eucalyptus/metabolism , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Metabolic Networks and Pathways , Molecular Sequence Annotation , Plant Leaves , Signal Transduction
3.
Brief Bioinform ; 13(1): 98-106, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22223742

ABSTRACT

We present an update to the Bio2RDF Linked Data Network, which now comprises ∼30 billion statements across 30 data sets. Significant changes to the framework include the accommodation of global mirrors, offline data processing and new search and integration services. The utility of this new network of knowledge is illustrated through a Bio2RDF-based mashup with microarray gene expression results and interaction data obtained from the HIV-1, Human Protein Interaction Database (HHPID) with respect to the infection of human macrophages with the human immunodeficiency virus type 1 (HIV-1).


Subject(s)
Computational Biology/methods , HIV-1/genetics , Databases, Protein , HIV Infections/virology , HIV-1/metabolism , Humans , Macrophages/virology , Microarray Analysis
4.
J Biomed Inform ; 41(5): 706-16, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18472304

ABSTRACT

Presently, there are numerous bioinformatics databases available on different websites. Although RDF was proposed as a standard format for the web, these databases are still available in various formats. With the increasing popularity of the semantic web technologies and the ever growing number of databases in bioinformatics, there is a pressing need to develop mashup systems to help the process of bioinformatics knowledge integration. Bio2RDF is such a system, built from rdfizer programs written in JSP, the Sesame open source triplestore technology and an OWL ontology. With Bio2RDF, documents from public bioinformatics databases such as Kegg, PDB, MGI, HGNC and several of NCBI's databases can now be made available in RDF format through a unique URL in the form of http://bio2rdf.org/namespace:id. The Bio2RDF project has successfully applied the semantic web technology to publicly available databases by creating a knowledge space of RDF documents linked together with normalized URIs and sharing a common ontology. Bio2RDF is based on a three-step approach to build mashups of bioinformatics data. The present article details this new approach and illustrates the building of a mashup used to explore the implication of four transcription factor genes in Parkinson's disease. The Bio2RDF repository can be queried at http://bio2rdf.org.


Subject(s)
Artificial Intelligence , Computational Biology/methods , Database Management Systems , Information Storage and Retrieval/methods , Programming Languages , Animals , Humans , Information Dissemination/methods , Internet/statistics & numerical data , Parkinson Disease/genetics , Semantics , Systems Integration , Terminology as Topic , Transcription Factors/analysis , Transcription Factors/metabolism , Vocabulary, Controlled
SELECTION OF CITATIONS
SEARCH DETAIL
...