Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
J Control Release ; 368: 728-739, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493951

ABSTRACT

Despite the potential of the enhanced permeability and retention (EPR) effect in tumor passive targeting, many nanotherapeutics have failed to produce meaningful clinical outcomes due to the variable and challenging nature of the tumor microenvironment (TME) and EPR effect. This EPR variability across tumors and inconsistent translation of nanomedicines from preclinical to clinical settings necessitates a reliable method to assess its presence in individual tumors. This study aimed to develop a reliable and non-invasive approach to estimate the EPR effect in tumors using a clinically compatible quantitative magnetic resonance imaging (qMRI) technique combined with a nano-sized MRI contrast agent. A quantitative MR imaging was developed using a dynamic contrast-enhanced (DCE) MRI protocol. Then, the permeability and retention of the nano-sized MRI contrast agent were evaluated in three different ovarian xenograft tumor models. Results showed significant differences in EPR effects among the tumor models, with tumor growth influencing the calculated parameters of permeability (Ktrans) and retention (Ve) based on Tofts pharmacokinetic (PK) modeling. Our data indicate that the developed quantitative DCE-MRI method, combined with the Tofts PK modeling, provides a robust and non-invasive approach to screen tumors for their responsiveness to nanotherapeutics. These results imply that the developed qMRI method can be beneficial for personalized cancer treatments by ensuring that nanotherapeutics are administered only to patients with tumors showing sufficient EPR levels.


Subject(s)
Contrast Media , Ovarian Neoplasms , Female , Humans , Contrast Media/pharmacokinetics , Nanomedicine , Models, Theoretical , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Magnetic Resonance Imaging/methods , Tumor Microenvironment
2.
Anal Chim Acta ; 1181: 338919, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34556210

ABSTRACT

Herein, a new turn-on fluorescent assay was established as a platform for the sensing of transcription factor NF-kB p50 based on triplex DNA labeled with N-doped carbon dots (NCDs) and gold nanoparticles (AuNPs) as donors and acceptors, respectively in the fluorescence resonance energy transfer (FRET) system. The synthetized nanoparticles were studied by different characterization techniques. A labeled DNA molecule was designed to form a triplex when no target protein existence and reported its formation by the change in FRET efficiency. While the triplex DNA was formed, the fluorescence of carbon dots at 503 nm (excitation at 460 nm) was quenched by FRET between NCD and AuNP. However, presence of NF-kB p50 followed by the considerable enhancement in the fluorescence intensity caused by the release of AuNPs labeled single stranded DNA from the triplex DNA structure, used for sensitive determination of the transcription factor. This technique showed a linearity (R2 = 0.9943) in the range of 20-150 pM with a limit of detection of 9 pM for the determination of NF-kB p50. Moreover, the sequence-specific triplex-based biosensor could discriminate NF-kB p50 from the other proteins with high selectively. Our results suggest that the biosensor provides a generalizable platform for rapid detection of NF-kB p50 in synthetic medium, promising in prevention and early diagnosis of cancer.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Quantum Dots , Carbon , DNA , Fluorescence Resonance Energy Transfer , Gold , Limit of Detection , Transcription Factors
3.
J Control Release ; 337: 132-143, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34284047

ABSTRACT

Ovarian cancer has the highest mortality rate among all gynecologic malignancies. HER2+ ovarian cancer is a subtype that is aggressive and associated with metastasis to distant sites such as the lungs. Therefore, accurate biological characterization of metastatic lesions is vital as it helps physicians select the most effective treatment strategy. Functional imaging of ovarian cancer with PET/CT is routinely used in the clinic to detect metastatic disease and evaluate treatment response. However, this imaging method does not provide information regarding the presence or absence of cancer-specific cell surface biomarkers such as HER2. As a result, this method does not help physicians decide whether to choose immunotherapy to treat metastasis. To differentiate the HER2+ from HER2¯ lesions in ovarian cancer lung metastasis, AbX50C4:Gd vector composed of a HER2 targeting affibody and XTEN peptide was genetically engineered. It was then labeled with gadolinium (Gd) via a stable linker. The vector was characterized physicochemically and biologically to determine its purity, molecular weight, hydrodynamic size and surface charge, stability in serum, endotoxin levels, relaxivity and ability to target the HER2 antigen. Then, SCID mice were implanted with SKOV-3 (HER2+) and OVASC-1 (HER2¯) tumors in the lungs and injected with the Gd-labeled HER2 targeted AbX50C4:Gd vector. The mice were imaged using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), followed by R1-mapping and quantitative analysis of the images. Our data demonstrate that the developed HER2-targeted vector can differentiate HER2+ lung metastasis from HER2¯ lesions using DCE-MRI. The developed vector could potentially be used in conjunction with other imaging modalities to prescreen patients and identify candidates for immunotherapy while triaging those who may not be considered responsive.


Subject(s)
Lung Neoplasms , Ovarian Neoplasms , Animals , Female , Gadolinium , Humans , Lung Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Mice , Mice, SCID , Ovarian Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography
4.
Mol Pharm ; 17(12): 4483-4498, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33205974

ABSTRACT

Mitochondrial malfunction plays a crucial role in cancer development and progression. Cancer cells show a substantially higher mitochondrial activity and greater mitochondrial transmembrane potential than normal cells. This concept can be exploited for targeting cytotoxic drugs to the mitochondria of cancer cells using mitochondrial-targeting compounds. In this study, a polyamidoamine dendrimer-based mitochondrial delivery system was prepared for curcumin using triphenylphosphonium ligands to improve the anticancer efficacy of the drug in vitro and in vivo. For the in vitro evaluations, various methods, such as viability assay, confocal microscopy, flow cytometry, reactive oxygen species (ROS), and real-time polymerase chain reaction analyses, were applied. Our findings showed that the targeted-dendrimeric curcumin (TDC) could successfully deliver and colocalize the drug to the mitochondria of the cancer cells, and selectively induce a potent apoptosis and cell cycle arrest at G2/M. Moreover, at a low curcumin dose of less than 25 µM, TDC significantly reduced adenosine triphosphate and glutathione, and increased the ROS level of the isolated rat hepatocyte mitochondria. The in vivo studies on the Hepa1-6 tumor-bearing mice also indicated a significant tumor suppression effect and the highest median survival days (Kaplan-Meier survival estimation and log-rank test) after treatment with the TDC construct compared to the free curcumin and untargeted construct. Besides its targeted nature and safety, the expected improved solubility and stability represent the prepared targeted-dendrimeric construct as an up-and-coming candidate for cancer treatment. The results of this study emphasize the promising route of mitochondrial targeting as a practical approach for cancer therapy, which can be achieved by optimizing the delivery method.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Curcumin/administration & dosage , Drug Carriers/chemistry , Liver Neoplasms/drug therapy , Polyamines/chemistry , Animals , Carcinoma, Hepatocellular/pathology , Cell Fractionation , Cell Line, Tumor , Curcumin/chemistry , Dendrimers/chemistry , Drug Stability , Hepatocytes , Humans , Liver Neoplasms/pathology , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Primary Cell Culture , Rats , Solubility , Xenograft Model Antitumor Assays
5.
J Biotechnol ; 323: 302-312, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32682804

ABSTRACT

Among various in vitro plant culture systems, hairy root systems seem to be one of the most appealing methods of recombinant protein production due to their advantages in combining both whole-plant cultivation and suspension cell culture platform. This is a report on production and secretion of a recombinant pharmaceutically active protein from hairy roots cultures of Withania somnifera to improve the economic potential of this plant for the production pharmaceutical compounds. In this study, we selected and synthesized a codon-optimized globular adiponectin (gAd) gene with a calreticulin signal peptide and cloned the sequence into a plant expression binary vector containing a nptII gene as a selectable marker gene. The transgenic hairy roots were produced by Agrobacterium rhizogenes-mediated transformation protocol developed by our group. Among ten established nptII positive hairy roots lines, six colons significantly accumulated gAd protein in the biomass and extracellular medium. The presence of gAd was confirmed by western blot analysis of root extracts. The maximum level of hairy root biomass, growth rate (GR), intra- and extracellular gAd expressions were obtained after 25-26 days of culture on MS medium. The maximum level of intra- and extracellular gAd proteins were found to be 15.19 µg/gFW and 215.7 µg/L, respectively, which resulted in a significant decrease in the amount of intra- and extracellular withanolide A and withaferin A production. The addition of PVP, KNO3 and NaCl significantly increased the level of extracellular gAd by approximately 13 folds. This improvement could significantly increase the amount of intra- and extracellular withanolide A and withaferin A production, too. The recombinant gAd produced from W. somnifera is functional as proved by induction the phosphorylation of ACC in C2C12 muscle cells, as its functional amount was 5.1-fold more than gAd produced from E. coli and 45 % lower than CHO cells.


Subject(s)
Adiponectin/genetics , Adiponectin/metabolism , Pharmaceutical Preparations/metabolism , Plant Roots/metabolism , Withania/genetics , Withania/metabolism , Agrobacterium , Animals , Bacterial Secretion Systems , Biomass , Cricetulus , Culture Media/metabolism , Escherichia coli/genetics , Gene Dosage , Plant Roots/growth & development , Plants, Genetically Modified , Withania/chemistry , Withania/growth & development , Withanolides/metabolism
6.
J Control Release ; 311-312: 273-287, 2019 10.
Article in English | MEDLINE | ID: mdl-31499084

ABSTRACT

The objective of this study was to develop a stem cell-based system for targeted suicide gene therapy of recurrent, metastatic, and unresectable ovarian cancer. Malignant cells were obtained from the ascites of a patient with advanced recurrent epithelial ovarian cancer (named OVASC-1). Cancer cells were characterized to determine the percentages of drug-resistant ALDH+ cells, MDR-1/ABCG2 overexpressing cells, and cancer stem-like cells. The sensitivity and resistance of the OVASC-1 cells and spheroids to the metabolites of three different enzyme/prodrug systems were assessed, and the most effective one was selected. Adipose-derived stem cells (ASCs) were genetically engineered to express recombinant secretory human carboxylesterase-2 and nanoluciferase genes for simultaneous disease therapy and quantitative imaging. Bioluminescent imaging, magnetic resonance imaging and immuno/histochemistry results show that the engineered ASCs actively targeted and localized at both tumor stroma and necrotic regions. This created the unique opportunity to deliver drugs to not only tumor supporting cells in the stroma, but also to cancer stem-like cells in necrotic/hypoxic regions. The statistical analysis of intraperitoneal OVASC-1 tumor burden and survival rates in mice shows that the administration of the bioengineered ASCs in combination with irinotecan prodrug in the designed sequence and timeline eradicated all intraperitoneal tumors and provided survival benefits. In contrast, treatment of the drug-resistant OVASC-1 tumors with cisplatin/paclitaxel (standard-of-care) did not have any statistically significant benefit. The histopathology and hematology results do not show any toxicity to major peritoneal organs. Our toxicity data in combination with efficacy outcomes delineate a nonsurgical and targeted stem cell-based approach to overcoming drug resistance in recurrent metastatic ovarian cancer.


Subject(s)
Carboxylesterase/therapeutic use , Enzyme Therapy , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/drug therapy , Prodrugs/administration & dosage , Stem Cells , Adipose Tissue/cytology , Animals , Antineoplastic Agents/administration & dosage , Bioengineering , Carboxylesterase/genetics , Cell Line, Tumor , Cisplatin/administration & dosage , Drug Resistance, Neoplasm , Female , Irinotecan/administration & dosage , Mice, Nude , Molecular Targeted Therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Paclitaxel/administration & dosage , Peritoneal Neoplasms/secondary
7.
Science ; 363(6430): 989-993, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30819964

ABSTRACT

To meet systemic metabolic needs, adipocytes release fatty acids and glycerol through the action of neutral lipases. Here, we describe a secondary pathway of lipid release from adipocytes that is independent of canonical lipolysis. We found that adipocytes release exosome-sized, lipid-filled vesicles (AdExos) that become a source of lipid for local macrophages. Adipose tissue from lean mice released ~1% of its lipid content per day via exosomes ex vivo, a rate that more than doubles in obese animals. AdExos and associated factors were sufficient to induce in vitro differentiation of bone marrow precursors into adipose tissue macrophage-like cells. Thus, AdExos are both an alternative pathway of local lipid release and a mechanism by which parenchymal cells can modulate tissue macrophage differentiation and function.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/immunology , Exosomes/metabolism , Lipid Metabolism , Macrophages/metabolism , Adipose Tissue/cytology , Animals , Bone Marrow Cells/metabolism , Cell Differentiation , Cells, Cultured , Lipase/metabolism , Lipolysis , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism
8.
Mikrochim Acta ; 186(3): 132, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30707293

ABSTRACT

A carbon quantum dot (CQD) labeled molecular beacon was synthesized and applied to the detection of microRNA-21. The CQDs possess low cytotoxicity, excellent water solubility, and photostability. The CQDs were characterized by transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The molecular beacon (MB) was labeled with the CQDs at the 5' end, and with Black Hole Quencher 1 (BHQ1) at the 3' end. The two labels act as the donor and acceptor parts of a FRET system, respectively. Only weak fluorescence is observed in the absence of microRNA-21, and in the presence of scrambled or mismatched sequences. However, in the presence of microRNA-21, fluorescence intensity of the CQDs at 460 nm (excitation at 360 nm) recovers. The hybridization of the hairpin structure of the MB with microRNA-21 opens the loop of MB. Consequently, the distance between the BHQ1 quencher and the CQDs is increased and fluorescence changes. The probe has high sensitivity (with a 0.3 nM limit of detection) and specificity. It can distinguish between microRNA-21 and its single mismatch mutant and hence represents a valuable tool for the early cancer diagnosis. Graphical abstract Schematic presentation of a fluorometric microR-21 assay using carbon dots carrying a molecular beacon (MB) labeled with a black hole quencher. Quenching is suppressed once the MB binds to microRNA-21.


Subject(s)
Biomarkers, Tumor/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , MicroRNAs/analysis , Quantum Dots/chemistry , Base Pair Mismatch , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Humans , Limit of Detection , Neoplasms/diagnosis , Particle Size , Surface Properties
9.
Cancer Med ; 7(8): 3630-3641, 2018 08.
Article in English | MEDLINE | ID: mdl-29926538

ABSTRACT

The majority of ovarian cancer patients are diagnosed in late stages of the disease, in which the tumor cells have leaked into the peritoneum and are present as tumorspheres. These tumorspheres are rich in cancer stem-like cells (CSCs), which are resistant to therapy and are a major source of relapse. The purpose of this research was to identify a safe therapeutic approach that could eradicate the peritoneal CSC-rich tumorspheres and inhibit relapse. Highly metastatic ascitic cells (OVASC-1) that are resistant to standard-of-care chemotherapy due to upregulation of MDR1 gene were obtained from a patient with ovarian carcinoma and recurrent disease. CSC-rich tumorspheres were generated, characterized, and treated with different chemotherapeutics. The most effective drug combination that could eradicate tumorspheres at nanomolar levels despite upregulation of MDR1 gene was identified. Luciferase-expressing OVASC-1 cells were implanted in the peritoneum of nude mice and treated with the identified drug combination. The progression of disease, response to therapy and recurrence were studied by quantitative imaging. Toxicity to abdominal tissues was studied by histopathology. Mice implanted with intraperitoneal (IP) OVASC-1 xenografts showed limited response to combination therapy with cisplatin/paclitaxel at the maximum tolerated dose. Despite overexpression of MDR1 on OVASC-1 cells, mice treated with our combination IP low-dose MMAE and SN-38 chemotherapy showed complete response without relapse. No signs of toxicity to abdominal tissues were observed. While MMAE and SN-38 are not administered as free drugs due to their high potency and potential for systemic toxicity, our low-dose localized therapy approach effectively restricted the cytotoxic effects to the tumor cells in the peritoneum. Consequently, maximum efficacy with minimal adverse effects was achieved. These remarkable results with IP low-dose combination chemotherapy encourage investigation into its potential clinical application as either first-line therapy or in cases of acquired resistance to cisplatin and paclitaxel.


Subject(s)
Antineoplastic Agents/administration & dosage , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Animals , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination , Female , Humans , Irinotecan/administration & dosage , Mice , Neoplastic Stem Cells/metabolism , Oligopeptides/administration & dosage , Spheroids, Cellular , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Acta Biomater ; 74: 236-246, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29783088

ABSTRACT

In recent years, there has been a great deal of interest in ex-vivo genetic modification of mesenchymal stem cells (MSCs) to meet various biomedical needs. Considering the self-renewal potential of MSCs, it is critically important to ensure that transfection vectors (gene carriers) do not induce genotoxicity because they could theoretically turn a single stem cell into a cancer-initiating cell. Unfortunately, there is currently no reliable, unbiased, and quantitative method to measure genotoxicity (micronuclei formation) of gene carriers directly in transfected MSCs. Consequently, it has not been possible to study the correlation of vectors' physicochemical characteristics with their impact on stem cell genome stability. To address this deficiency, a flow cytometry-based method with a specialized gating protocol was developed that not only measures micronuclei formation, but also determines the mechanism of mutagenesis (i.e., clastogenic vs. aneugenic) of each vector in transfected MSCs. This gating protocol effectively eliminates all interfering signals associated with aggregated nanoparticles (viral and non-viral), exogenous DNA, and apoptotic/necrotic bodies from the micronuclei measurement process. The presented gating protocol for flow cytometry, which is provided as a template, enables investigators in academia, industry and regulatory bodies to rapidly and reliably evaluate the genosafety profiles of gene carriers. The findings of this study also indicate that highly positively charged lipid- and polymeric-based vectors can induce genotoxicity even without manifesting substantial somatic toxicity. Thus, extreme care must be taken before implanting ex-vivo-modified MSCs back into a patient's body. STATEMENT OF SIGNIFICANCE: There is a great interest in genetic modification of stem cells (SCs) by using vectors for various biomedical needs. Considering the self-renewal potential of SCs, it is essential to ensure that such vectors do not induce genetic aberrations (genotoxicity) because they could theoretically turn a single stem cell into a cancer-initiating cell. Unfortunately, there is currently no reliable method to measure genotoxicity of vectors directly in transfected SCs. To address this deficiency, a specialized flow cytometry-based method was developed that quantitatively analyzed genotoxicity and determined the mechanism of mutagenesis that occurred in transfected SCs during the transfection process. The developed technique will enable scientists to design safer vectors for genetic modification of stem cells.


Subject(s)
DNA Damage , DNA , Genetic Vectors , Mesenchymal Stem Cells/metabolism , Mutagenesis/drug effects , Nanostructures/chemistry , Transfection , DNA/chemistry , DNA/pharmacology , Genetic Vectors/chemistry , Genetic Vectors/pharmacology , Humans , Mesenchymal Stem Cells/pathology
11.
Biomaterials ; 152: 1-14, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29078136

ABSTRACT

Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy.


Subject(s)
Gene Transfer Techniques , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Bioengineering , Cell Differentiation , Cell Proliferation , Cell-Penetrating Peptides/genetics , Cells, Cultured , Escherichia coli/genetics , Humans , Mesenchymal Stem Cells/cytology , Nanoparticles , Particle Size , Peptides, Cyclic , Receptor, ErbB-2/genetics , Surface Properties , Vascular Endothelial Growth Factor Receptor-1/metabolism
12.
Biomacromolecules ; 18(9): 2799-2807, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28806522

ABSTRACT

The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.


Subject(s)
Genetic Therapy/methods , Histones/genetics , Nanoparticles/chemistry , Peptides/genetics , Animals , Cell Line, Tumor , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histones/chemistry , Histones/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Nanoparticles/adverse effects , Peptides/chemistry , Peptides/metabolism , Prostatic Neoplasms/therapy , Protein Engineering/methods , Recombinant Proteins
13.
Drug Res (Stuttg) ; 67(8): 458-465, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28561240

ABSTRACT

Biodegradable copolymeric polymersomes have been used for controlled drug delivery of proteins. These polymersomes important areas to overcome formulation associated problems of the proteins. The aim of this study was to develop polymersomes using biodegradable copolymers for delivery of bovine serum albumin (BSA) as a model protein. Encapsulated BSA by mPEG-PCL polymersomes led to formation of BSA-loaded mPEG-PCL polymersomes. The polymersomes synthesized with the protein-polymer ratio of 1:4 at 15 000 rpm gave maximum loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared polymersomes. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between BSA and the copolymer.The particles size and their morphology of polymersomes were determined by DLS and AFM.The encapsulation efficiency of BSA was 91.02%. The results of AFM showed that the polymersomes had spherical shapes with size of 49 nm.The sizes of BSA-loaded polymersomes ranged from 66.06 nm to 84.97 nm. The results showed that polymersomes exhibited a triphasic release, for BSA. Overall, the results indicated that mPEG-PCL polymersomes can be considered as a promising carrier for proteins.


Subject(s)
Drug Carriers/chemistry , Drug Compounding/methods , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Serum Albumin, Bovine/administration & dosage , Biodegradable Plastics/chemistry , Drug Carriers/chemical synthesis , Drug Liberation , Drug Stability , Particle Size , Polymers/chemical synthesis
14.
Protein Expr Purif ; 134: 11-17, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28315745

ABSTRACT

The growing complexity of recombinant biopolymers for delivery of bioactive agents requires the ability to control the biomaterial structure with high degree of precision. Genetic engineering techniques have provided this opportunity to synthesize biomaterials in an organism such as E. coli with full control over their lengths and sequences. One class of such biopolymers is recombinant cationic biopolymers with applications in gene delivery, regenerative medicine and variety of other biomedical applications. Unfortunately, due to their highly cationic nature and complex structure, their production in E. coli expression system is marred by low expression yield which in turn complicates the possibility of obtaining pure biopolymer. SlyD and ArnA endogenous E. coli proteins are considered the major culprits that copurify with the low-expressing biopolymers during the metal affinity chromatography. Here, we compared the impact of different parameters such as the choice of expression hosts as well as metal affinity columns in order to identify the most effective approach in obtaining highly pure recombinant cationic biopolymers with acceptable yield. The results of this study showed that by using E. coli BL21(DE3) LOBSTR strain and in combination with our developed stringent expression and Ni-NTA purification protocols highly pure products in one purification step (>99% purity) can be obtained. This approach could be applied to the production of other complex and potentially toxic biopolymers with wide range of applications in biomedicine.


Subject(s)
Carboxy-Lyases , Escherichia coli Proteins , Escherichia coli , Gene Expression , Peptidylprolyl Isomerase , Carboxy-Lyases/biosynthesis , Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Carboxy-Lyases/isolation & purification , Cations/chemistry , Cations/isolation & purification , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Peptidylprolyl Isomerase/biosynthesis , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/isolation & purification
15.
Biotechnol Appl Biochem ; 64(3): 423-432, 2017 May.
Article in English | MEDLINE | ID: mdl-27037851

ABSTRACT

A novel biotinylated chitosan-graft-polyethyleneimine (Bio-Chi-g-PEI) copolymer was synthesized and evaluated as a nonviral gene delivery carrier for improvement of the transfection efficiency, endosomal escape, and targeted gene delivery of a plasmid encoding green fluorescent protein N1 (pEGFP-N1) into two different biotin-overexpressing cell lines including HeLa and OVCAR-3 cells. The structure of the obtained copolymers was confirmed by 1 H nuclear magnetic resonance (1 H NMR) and Fourier transform infrared spectroscopy. Physicochemical properties of the Bio-Chi-g-PEI/plasmid DNA (pDNA) complexes such as complex stability, size, zeta potential, and their morphology were investigated at various weight ratios of copolymer to pDNA. Bio-Chi-g-PEI copolymers could effectively condense pDNA into small particles with average diameters less than 164 nm and the zeta potential of +34.8 mV at the N/P ratio of 40/1. As revealed by flow cytometry, Bio-Chi-g-PEI/pDNA complexes had lower cytotoxicity than that of PEI 25 kDa/pDNA complexes in both cell lines. In vitro experiments revealed that the Bio-Chi-gPEI/pDNA complexes not only had much lower cytotoxicity, but also displayed higher transfection efficiency than that of PEI 25kDa/pDNA complexes. High percentage of cancer cells was successfully transfected by Bio-Chi-g-PEI/pDNA and properly expressed GFP protein. This study indicates that this copolymer complex can be a promising gene delivery carrier.


Subject(s)
Biotin/chemistry , Chitosan/chemistry , Gene Transfer Techniques , Neoplasms/metabolism , Plasmids , Green Fluorescent Proteins/biosynthesis , HeLa Cells , Humans , Neoplasms/pathology , Neoplasms/therapy , Plasmids/chemistry , Plasmids/pharmacology
16.
Curr Pharmacol Rep ; 2(6): 299-308, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28042530

ABSTRACT

The use of enzyme/prodrug system has gained attention because it could help improve the efficacy and safety of conventional cancer chemotherapies. In this approach, cancer cells are first transfected with a gene that can express an enzyme with ability to convert a non-toxic prodrug into its active cytotoxic form. As a result, the activated prodrug could kill the transfected cancer cells. Despite the significant progress of different suicide gene therapy protocols in preclinical studies and early clinical trials, none has reached the clinic due to several shortcomings. These include slow prodrug-drug conversion rate, low transfection/transduction efficiency of the vectors and nonspecific toxicity/immunogenicity related to the delivery systems, plasmid DNA, enzymes and/or prodrugs. This mini review aims at providing an overview of the most widely used enzyme/prodrug systems with emphasis on reporting the results of the recent preclinical and clinical studies.

17.
Int J Nanomedicine ; 9: 5541-54, 2014.
Article in English | MEDLINE | ID: mdl-25489242

ABSTRACT

Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol)-oleate (mPEG-OA) and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC), encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts) of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 µM and 24 µM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 µM or 0.03 g/L). Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests revealed that this nanocarrier can be considered as an appropriate drug delivery system for delivering curcumin to cancer cells.


Subject(s)
Antineoplastic Agents/chemistry , Curcumin/chemistry , Drug Carriers/chemistry , Oleic Acid/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Curcumin/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Micelles , Particle Size
18.
J Control Release ; 187: 59-65, 2014 Aug 10.
Article in English | MEDLINE | ID: mdl-24838099

ABSTRACT

Intracellular limiting steps and molecules involved in internalization and intracellular routing of non-viral gene delivery systems are still poorly understood. In this study, the intracellular kinetics of three different gene delivery systems calcium phosphate precipitates (CaP), polyethyleneimine (PEI) and N-[1-(2,3-dioleyl)propyl]-N,N,N-trimethylammonium chloride (DOTAP)) were quantified at cellular, nuclear, transcriptional and translational levels by using qRT-PCR. Additionally, a role of cell surface glycosaminoglycans (GAGs) was evaluated by performing the aforementioned studies in cells devoid of GAGs (pgsB-618) and cells lacking heparan sulphate (HS). The obtained data showed that the intracellular kinetics was dependent on the type of gene carrier and the weakest intracellular step varied between the carriers; rapid elimination of cell-associated pDNA in CaP, nuclear uptake in DOTAP and transcriptional and translational events in PEI mediated transfections. Overall, neither the amount of cell- nor nuclear associated pDNA correlated with transgene expression but the mRNA expression of the transgene correlated well with the expression at protein level. The nuclear uptake of pDNA in all cases was rapid and efficient thus indicating that the post-nuclear processes including transcription and translation steps have a critical role in defining the efficiency of non-viral gene delivery systems. Our study demonstrated that cell-surface GAGs are not essential for cell surface binding and internalization of gene delivery complexes, but they are able to define the intracellular routing of the complexes by leading them to pathways with high pDNA elimination.


Subject(s)
Cell Membrane/metabolism , DNA/administration & dosage , Gene Transfer Techniques , Glycosaminoglycans/metabolism , Animals , CHO Cells , Calcium Phosphates , Cricetulus , Fatty Acids, Monounsaturated , Luciferases/genetics , Luciferases/metabolism , Plasmids , Polyethyleneimine , Quaternary Ammonium Compounds
19.
Int J Pharm ; 456(2): 408-16, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24012865

ABSTRACT

The major impediments to develop an efficient non-viral siRNA-mediated gene silencing method, as a therapeutic approach, are the low cellular uptake and intracellular delivery and release of non-viral vectors. To overcome these problems, designing a proper vector with high transfection efficiency is obviously under scrutiny of various studies. The present study, evaluate a novel biotinylated chitosan-graft-polyethyleneimine (Bio-Chi-g-PEI) copolymer as an appropriate non-viral vector for targeted delivery of siRNA to cancer cells. The composition of the synthesized Bio-Chi-g-PEI copolymer was thoroughly characterized using (1)H NMR and FTIR spectroscopy, besides the hydroxyazobenzene-2-carboxylic acid (HABA) assay. In vitro cytotoxicity assay of the Bio-Chi-g-PEI copolymers was performed by MTT assay. Cytotoxicity evaluations indicated that the new copolymer was markedly less toxic than PEI 25KD. Physicochemical properties of the Bio-Chi-g-PEI/siRNA complexes such as complex stability, size, zeta potential, and their morphology at various weight ratios, investigated by appropriate methods, revealed the suitability of the complexes for the transfection. The efficient cellular internalization of the complexes for HeLa and OVCAR-3 cells in culture media was confirmed by intracellular tracking of the prepared complexes using confocal laser scanning microscopy and Cy3-labeled anti-epidermal growth factor receptor siRNA. Finally, evaluation of the transfection efficiency and gene silencing by flow cytometry and real-time polymerase chain reaction highlighted the significantly higher efficiency of transfection and silencing for biotinylated copolymer compared with the PEI 25KD and non-biotinylated copolymer.


Subject(s)
Biotinylation/methods , Chitosan/analogs & derivatives , ErbB Receptors , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Polyethyleneimine/analogs & derivatives , RNA, Small Interfering/administration & dosage , Cell Survival/drug effects , Cell Survival/genetics , Chitosan/administration & dosage , Chitosan/chemistry , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Targeting/methods , Genetic Vectors/chemistry , HeLa Cells , Humans , Polyethyleneimine/administration & dosage , Polyethyleneimine/chemistry , Polymers/administration & dosage , Polymers/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics
20.
Int J Pharm ; 448(1): 231-8, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23535347

ABSTRACT

Nowadays a large number of clinical trials suffer from lacking an efficient method for drug delivery into target cells with minimal side effects. Due to the great significance of this issue in novel and effective therapies, more attempts are required in order to distinguish better conditions for biomedical drug delivery. Since embryonic stem cells (ESCs) are under scrutiny of many new studies, development of novel methods for their genetical and functional modifications is of great value. On the other hand, the application of short nucleic acids in new therapeutic approaches is increasing. In this study the efficiency of small interfering RNA (siRNA) uptake with two transfection reagents generation five of polyamidoamine dendrimer (PAMAM G5) as a cationic dendrimer and N-[1-(2,3-dioleoyloxy)]-N,N,N-trimethylammonium propane methyl-sulfate (DOTAP) as a cationic lipid and one commercially available reagent were evaluated in mouse ESCs using flow cytometry. Prior to the cellular investigations; atomic force microscopy; gel electrophoresis; siRNA binding and release assays; and size and zeta potential measurements were utilized to characterize the physicochemical properties of reagent-siRNA nano-complexes. The safety of the nano-complexes was subsequently assessed by MTT assay. Functional effects of siRNA (complementary strand for OCT4 transcript) transfection in ESCs with the mentioned reagents were analyzed using a quantitative real-time polymerase chain reaction (qPCR). Surprisingly DOTAP at higher molar ratios and PAMAM at lower molar ratios could successfully knock down the OCT4 transcription relatively better than commercial reagent. Our findings supported the appropriate efficiency of the mentioned transfection reagents for short nucleic acid transfection. From a clinical point of view, this research helps allocation of short nucleic acids into stem cells therapies.


Subject(s)
Dendrimers/chemistry , Embryonic Stem Cells/metabolism , Fatty Acids, Monounsaturated/chemistry , Quaternary Ammonium Compounds/chemistry , RNA, Small Interfering/administration & dosage , Transfection/methods , Animals , Cell Survival/drug effects , Cells, Cultured , Liposomes , Mice , Octamer Transcription Factor-3/genetics , Particle Size , RNA, Small Interfering/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL