Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10757, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402770

ABSTRACT

ARL-17477 is a selective neuronal nitric oxide synthase (NOS1) inhibitor that has been used in many preclinical studies since its initial discovery in the 1990s. In the present study, we demonstrate that ARL-17477 exhibits a NOS1-independent pharmacological activity that involves inhibition of the autophagy-lysosomal system and prevents cancer growth in vitro and in vivo. Initially, we screened a chemical compound library for potential anticancer agents, and identified ARL-17477 with micromolar anticancer activity against a wide spectrum of cancers, preferentially affecting cancer stem-like cells and KRAS-mutant cancer cells. Interestingly, ARL-17477 also affected NOS1-knockout cells, suggesting the existence of a NOS1-independent anticancer mechanism. Analysis of cell signals and death markers revealed that LC3B-II, p62, and GABARAP-II protein levels were significantly increased by ARL-17477. Furthermore, ARL-17477 had a chemical structure similar to that of chloroquine, suggesting the inhibition of autophagic flux at the level of lysosomal fusion as an underlying anticancer mechanism. Consistently, ARL-17477 induced lysosomal membrane permeabilization, impaired protein aggregate clearance, and activated transcription factor EB and lysosomal biogenesis. Furthermore, in vivo ARL-17477 inhibited the tumor growth of KRAS-mutant cancer. Thus, ARL-17477 is a dual inhibitor of NOS1 and the autophagy-lysosomal system that could potentially be used as a cancer therapeutic.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Autophagy/physiology , Neoplasms/pathology , Lysosomes/metabolism , Nitric Oxide Synthase Type I/metabolism
2.
Cell Chem Biol ; 28(11): 1581-1589.e6, 2021 11 18.
Article in English | MEDLINE | ID: mdl-33964212

ABSTRACT

Oncogenic RAS proteins, common oncogenic drivers in many human cancers, have been refractory to conventional small-molecule and macromolecule inhibitors due to their intracellular localization and the lack of druggable pockets. Here, we present a feasible strategy for designing RAS inhibitors that involves intracellular delivery of RAS-binding domain (RBD), a nanomolar-affinity specific ligand of RAS. Screening of 51 different combinations of RBD and cell-permeable peptides has identified Pen-cRaf-v1 as a cell-permeable pan-RAS inhibitor capable of targeting both G12C and non-G12C RAS mutants. Pen-cRaf-v1 crosses the cell membrane via endocytosis, competitively inhibits RAS-effector interaction, and thereby exerts anticancer activity against several KRAS-mutant cancer cell lines. Moreover, Pen-cRaf-v1 exhibits excellent activity comparable with a leading pan-RAS inhibitor (BI-2852), as well as high target specificity in transcriptome analysis and alanine mutation analysis. These findings demonstrate that specific inhibition of oncogenic RAS, and possibly treatment of RAS-mutant cancer, is feasible by intracellular delivery of RBD.


Subject(s)
Antineoplastic Agents/pharmacology , ras Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Signal Transduction/drug effects , Tumor Cells, Cultured , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...