Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
World J Microbiol Biotechnol ; 40(7): 200, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730212

ABSTRACT

Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.


Subject(s)
Methanol , Promoter Regions, Genetic , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Methanol/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Gene Expression Regulation, Fungal
2.
J Biosci Bioeng ; 137(6): 471-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472071

ABSTRACT

Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.


Subject(s)
Antibodies, Monoclonal , Biological Products , Bioreactors , Cricetulus , Recombinant Proteins , CHO Cells , Animals , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Cricetinae , Antibodies, Monoclonal/biosynthesis , Biological Products/metabolism , Immunoglobulin G/metabolism , Cell Culture Techniques/methods , Humans , Batch Cell Culture Techniques/methods
3.
Biotechnol Bioeng ; 121(6): 1889-1901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38500437

ABSTRACT

Microfiltration (MF) is an essential step during biopharmaceutical manufacturing. However, unexpected flux decay can occur. Although the flux decay profile and initial flux are important factors determining MF filterability, predicting them accurately is challenging, as the root cause of unexpected flux decay remains elusive. In this study, the methodology for developing a prediction model of flux decay profiles was established. First, the filtration profiles of different monodisperse polystyrene latex and silica beads of various sizes were evaluated. These results revealed that the size and surface electrostatic properties of the beads affect the flux decay profile. Taking the size and surface electrostatic properties of protein aggregates into account, we constructed a predictive model using model bead filtration profiles. We showed that this methodology was applicable to two different MF filters to predict the flux decay profile of therapeutic proteins. Because our proposed prediction model is based on normalized flux, the initial flux is required to predict the overall filtration profile. Then, we applied the Hagen-Poiseuille equation using sample viscosity values to estimate the initial flux. The developed prediction models can be used for effective MF scale-up assessment during the early stages of process development.


Subject(s)
Proteins , Proteins/chemistry , Proteins/metabolism , Filtration/methods , Particle Size
4.
Biotechnol Prog ; 40(2): e3420, 2024.
Article in English | MEDLINE | ID: mdl-38146091

ABSTRACT

Virus filtration is one of the most important steps in ensuring viral safety during the purification of monoclonal antibodies (mAbs) and other biotherapeutics derived from mammalian cell cultures. Regarding the various virus retentive filters, including Planova filters, a great deal of data has been reported on the virus retention capability and its mechanism. Along with the virus retention capability, filterability is a key performance indicator for designing a robust and high-throughput virus filtration step. In order to obtain higher filterability, optimization of the feed solution conditions, and filter selection is essential; however, limited data are available regarding the filtration characteristics of Planova filters. Furthermore, for Planova 20N and Planova BioEX, the virus retention characteristics were reported to differ due to their respective membrane materials and layer structures. Whether these filters differ in their filtration characteristics is an interesting question, but no comparative evaluations have been reported. In this study, the filterability of the two filters was investigated and compared using 15 feed mAb solutions of a single mAb selected by design of experiments with different combinations of pH, NaCl concentration, and mAb concentration. The filterability of Planova 20N was affected not only by the feed solution viscosity, but also by the mAb aggregate content of the feed mAb solution and mAb-membrane electrostatic interactions. In contrast, the filterability of Planova BioEX decreased under some buffer conditions. These findings and the established design spaces of these filters provide valuable insights into the process optimization of virus filtration.


Subject(s)
Sodium Chloride , Viruses , Animals , Filtration , Antibodies, Monoclonal , Hydrogen-Ion Concentration , Mammals
5.
Sci Rep ; 13(1): 21805, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071246

ABSTRACT

Chinese hamster ovary (CHO) cells are widely utilized in the production of antibody drugs. To ensure the production of large quantities of antibodies that meet the required specifications, it is crucial to monitor and control the levels of metabolites comprehensively during CHO cell culture. In recent years, continuous analysis methods employing on-line/in-line techniques using Raman spectroscopy have attracted attention. While these analytical methods can nondestructively monitor culture data, constructing a highly accurate measurement model for numerous components is time-consuming, making it challenging to implement in the rapid research and development of pharmaceutical manufacturing processes. In this study, we developed a comprehensive, simple, and automated method for constructing a Raman model of various components measured by LC-MS and other techniques using machine learning with Python. Preprocessing and spectral-range optimization of data for model construction (partial least square (PLS) regression) were automated and accelerated using Bayes optimization. Subsequently, models were constructed for each component using various model construction techniques, including linear regression, ridge regression, XGBoost, and neural network. This enabled the model accuracy to be improved compared with PLS regression. This automated approach allows continuous monitoring of various parameters for over 100 components, facilitating process optimization and process monitoring of CHO cells.


Subject(s)
Cell Culture Techniques , Spectrum Analysis, Raman , Cricetinae , Animals , Spectrum Analysis, Raman/methods , Cricetulus , CHO Cells , Bayes Theorem , Cell Culture Techniques/methods , Antibodies , Machine Learning
6.
Biotechnol Bioeng ; 120(11): 3381-3395, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37605806

ABSTRACT

Cell culture scale-up is a challenging task due to the simultaneous change of multiple hydrodynamic process characteristics and their different dependencies on the bioreactor size as well as variation in the requirements of individual cell lines. Conventionally, the volumetric power input is the most common parameter to select the impeller speed for scale-up, however, it is well reported that this approach fails when there are huge differences in bioreactor scales. In this study, different scale-up criteria are evaluated. At first, different hydrodynamic characteristics are assessed using computational fluid dynamics data for four single-use bioreactors, the Mobius® CellReady 3 L, the Xcellerex™ XDR-10, the Xcellerex™ XDR-200, and the Xcellerex™ XDR-2000. On the basis of this numerical data, several potential scale-up criteria such as volumetric power input, impeller tip speed, mixing time, maximum hydrodynamic stress, and average strain rate in the impeller zone are evaluated. Out of all these criteria, the latter is found to be most appropriate, and the successful scale-up from 3 to 10 L bioreactor and to 200 L bioreactor is confirmed with cell culture experiments using Chinese Hamster Ovary cell cultivation.

7.
J Biosci Bioeng ; 135(3): 196-202, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36702678

ABSTRACT

Three Ogataea minuta var. minuta strains have been deposited as NBRC 0975, NBRC 10402, and NBRC 10746 in the National Institute of Technology and Evaluation (NITE) Biological Resource Center (NBRC) collection. We investigated the ability to produce secretory proteins and several genotypic and phenotypic characteristics in order to select the best strain for heterologous protein expression. NBRC 10746 showed the best performance as evaluated by Cypridina noctiluca luciferase expression. Subsequently, clone #5-30 named tat06213, which was obtained by single-colony isolation from NBRC 10746, was established as a promising host for heterologous protein expression. To deepen our understanding of the characteristics of O.minuta var. minuta strains, sequence analysis of the D1/D2 domain of large subunit rRNA was conducted and the resulting phylogenetic tree derived from the D1/D2 domain showed that NBRC 10402 and NBRC 10746 were grouped into a different cluster far from NBRC 0975. Furthermore, a chromosome structure topology with electrophoretic karyotype and AOX1 loci analyzed by pulsed-field gel electrophoresis with Southern blotting showed different chromosome patterns and AOX1-hybridization loci among the strains. Additionally, the sequences of the promoter regions of the cloned AOX1 genes were not identical among the three strains. These findings might explain the differences in heterologous protein expression among the tested O. minuta var. minuta strains.


Subject(s)
Saccharomycetales , Phylogeny , Saccharomycetales/genetics , Saccharomycetales/metabolism , Yeasts/genetics , Protein Processing, Post-Translational , Sequence Analysis, DNA
8.
Bioengineering (Basel) ; 9(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35621484

ABSTRACT

Two-way Euler-Lagrange simulations are performed to characterize the hydrodynamics in the single-use bioreactor Mobius® CellReady 3 L. The hydrodynamics in stirred tank bioreactors are frequently modeled with the Euler-Euler approach, which cannot capture the trajectories of single bubbles. The present study employs the two-way coupled Euler-Lagrange approach, which accounts for the individual bubble trajectories through Langrangian equations and considers their impact on the Eulerian liquid phase equations. Hydrodynamic process characteristics that are relevant for cell cultivation including the oxygen mass transfer coefficient, the mixing time, and the hydrodynamic stress are evaluated for different working volumes, sparger types, impeller speeds, and sparging rates. A microporous sparger and an open pipe sparger are considered where bubbles of different sizes are generated, which has a pronounced impact on the bubble dispersion and the volumetric oxygen mass transfer coefficient. It is found that only the microporous sparger provides sufficiently high oxygen transfer to support typical suspended mammalian cell lines. The simulated mixing time and the volumetric oxygen mass transfer coefficient are successfully validated with experimental results. Due to the small reactor size, mixing times are below 25 s across all tested conditions. For the highest sparging rate of 100 mL min-1, the mixing time is found to be two seconds shorter than for a sparging rate of 50 mL min-1, which again, is 0.1 s longer than for a sparging rate of 10 mL min-1 at the same impeller speed of 100 rpm and the working volume of 1.7 L. The hydrodynamic stress in this bioreactor is found to be below critical levels for all investigated impeller speeds of up to 150 rpm, where the maximum levels are found in the region where the bubbles pass behind the impeller blades.

9.
Sci Rep ; 12(1): 7239, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610229

ABSTRACT

Chinese hamster ovary (CHO) cells are widely used for manufacturing antibody drugs. We attempted to clone a novel high-expression promoter for producing monoclonal antibodies (mAbs) based on transcriptome analysis to enhance the transcriptional abundance of mAb genes. The efficacy of conventional promoters such as CMV and hEF1α decrease in the latter phase of fed-batch cell culture. To overcome this, we screened genes whose expression was maintained or increased throughout the culture period. Since CHO cells have diverse genetic expression depending on the selected clone and culture medium, transcriptome analysis was performed on multiple clones and culture media anticipated to be used in mAb manufacturing. We thus acquired the Hspa5 promoter as a novel high-expression promoter, which uniquely enables mAb productivity per cell to improve late in the culture period. Productivity also improved for various IgG subclasses under Hspa5 promoter control, indicating this promoter's potential universal value for mAb production. Finally, it was suggested that mAb production with this promoter is correlated with the transcription levels of endoplasmic reticulum stress-related genes. Therefore, mAb production utilizing the Hspa5 promoter might be a new method for maintaining protein homeostasis and achieving stable expression of introduced mAb genes during fed-batch culture.


Subject(s)
Antibody Formation , Batch Cell Culture Techniques , Animals , Antibodies, Monoclonal/genetics , CHO Cells , Cricetinae , Cricetulus , Culture Media
10.
Article in English | MEDLINE | ID: mdl-35183952

ABSTRACT

The International Conference on Harmonization guidelines for quality on pharmaceutical development recommends a systematic development approach including robustness studies which assure performance of manufacturing and analytical method development of drug product. It was demonstrated that the retention prediction model for nucleoside triphosphates (NTPs) on ion-pair reversed-phase HPLC was developed by a highly accurate Kawabe's model which supports the development of robust HPLC methods. As NTPs and its derivatives are typically used for Messenger ribonucleic acid (mRNA) vaccine production, adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), cytidine-5'-triphosphate (CTP), 5-methylcytidine-5'-triphosphate (m5-CTP), uridine-5'-triphosphate (UTP), 5-methyluridine-5'-triphosphate (m5-UTP), pseudouridine-5'-triphosphate (Ψ-UTP) and N1-methylpseudouridine-5'-triphosphate (m1Ψ-UTP) were applied for prediction model development. By a comparison of the predicted retention factor in eight studied samples with the retention factor measured under six isocratic conditions, the absolute prediction error was 0.075 and also the prediction error (%) was 2.70%. In practical examples, analytical method for residual ATP, GTP, CTP, and m1Ψ-UTP in the commercial mRNA-based drugs and purity method for UTP derivatives were optimized by QbD approach. The design space for the minimum resolution between adjacent peaks was simulated with the models developed to evaluate the robustness of peak separation, and the optimal mobile phase condition was also simulated. As a conclusion, the desired peak was successfully separated under the optimized condition, and we thought that these retention models could optimize the mobile phase condition of the NTP analysis method for applying to various quality tests, such as quantity, purity and identity test for NTPs and its derivates in the mRNA-based drugs.

11.
Bioengineering (Basel) ; 9(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35049731

ABSTRACT

Understanding the hydrodynamic conditions in bioreactors is of utmost importance for the selection of operating conditions during cell culture process development. In the present study, the two-phase flow in the lab-scale single-use bioreactor XcellerexTM XDR-10 is characterized for working volumes from 4.5 L to 10 L, impeller speeds from 40 rpm to 360 rpm, and sparging with two different microporous spargers at rates from 0.02 L min-1 to 0.5 L min-1. The numerical simulations are performed with the one-way coupled Euler-Lagrange and the Euler-Euler models. The results of the agitated liquid height, the mixing time, and the volumetric oxygen mass transfer coefficient are compared to experiments. For the unbaffled XDR-10, strong surface vortex formation is found for the maximum impeller speed. To support the selection of suitable impeller speeds for cell cultivation, the surface vortex formation, the average turbulence energy dissipation rate, the hydrodynamic stress, and the mixing time are analyzed and discussed. Surface vortex formation is observed for the maximum impeller speed. Mixing times are below 30 s across all conditions, and volumetric oxygen mass transfer coefficients of up to 22.1 h-1 are found. The XDR-10 provides hydrodynamic conditions which are well suited for the cultivation of animal cells, despite the unusual design of a single bottom-mounted impeller and an unbaffled cultivation bioreactor.

12.
J Biosci Bioeng ; 133(3): 273-280, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34930670

ABSTRACT

Chinese hamster ovary (CHO) cells are widely used for constructing expression systems to produce therapeutic proteins. However, the establishment of high-producer clones remains a laborious and time-consuming process, despite various progresses having been made in cell line development. We previously developed a new strategy for screening high monoclonal antibody (mAb)-producing cells using flow cytometry (FCM). We also reported that p180 and SF3b4 play key roles in active translation on the endoplasmic reticulum, and that the productivity of secreted alkaline phosphatase was enhanced by the overexpression of p180 and SF3b4. Here, we attempted to apply the translational enhancing technology to high mAb-producing cells obtained after high-producer cell sorting. A high mAb-producing CHO clone, L003, which showed an mAb production level of >3 g/L in fed-batch culture, was established from a high mAb-producing cell pool fractionated by FCM. Clones generated by the overexpression of p180 and SF3b4 in L003 cells were evaluated by fed-batch culture. The specific productivity of clones overexpressing these two factors was ∼3.1-fold higher than that of parental L003 cells in the early phase of the culture period. Furthermore, the final mAb concentration was increased to 9.5 g/L during 17 days of fed-batch culture after optimizing the medium and culture process. These results indicate that the overexpression of p180 and SF3b4 would be promising for establishing high-producer cell lines applicable to industrial production.


Subject(s)
Antibodies, Monoclonal , Batch Cell Culture Techniques , Animals , CHO Cells , Cricetinae , Cricetulus , Recombinant Proteins , Technology
13.
PLoS One ; 16(4): e0250416, 2021.
Article in English | MEDLINE | ID: mdl-33886677

ABSTRACT

There is a continuous demand to improve monoclonal antibody production for medication supply and medical cost reduction. For over 20 years, recombinant Chinese hamster ovary cells have been used as a host in monoclonal antibody production due to robustness, high productivity and ability to produce proteins with ideal glycans. Chemical compounds, such as dimethyl sulfoxide, lithium chloride, and butyric acid, have been shown to improve monoclonal antibody production in mammalian cell cultures. In this study, we aimed to discover new chemical compounds that can improve cell-specific antibody production in recombinant Chinese hamster ovary cells. Out of the 23,227 chemicals screened in this study, 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide was found to increase monoclonal antibody production. The compound suppressed cell growth and increased both cell-specific glucose uptake rate and the amount of intracellular adenosine triphosphate during monoclonal antibody production. In addition, the compound also suppressed the galactosylation on a monoclonal antibody, which is a critical quality attribute of therapeutic monoclonal antibodies. Therefore, the compound might also be used to control the level of the galactosylation for the N-linked glycans. Further, the structure-activity relationship study revealed that 2,5-dimethylpyrrole was the most effective partial structure of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide on monoclonal antibody production. Further structural optimization of 2,5-dimethylpyrrole derivatives could lead to improved production and quality control of monoclonal antibodies.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Benzamides/pharmacology , Metabolic Engineering/methods , Pyrroles/pharmacology , Signal Transduction/drug effects , Adenosine Triphosphate/metabolism , Animals , Antibodies, Monoclonal/genetics , CHO Cells , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Survival/drug effects , Cricetulus , Culture Media/chemistry , Galactose/metabolism , Glucose/metabolism , Polysaccharides/metabolism , Structure-Activity Relationship
14.
Biotechnol Prog ; 36(3): e2955, 2020 05.
Article in English | MEDLINE | ID: mdl-31894893

ABSTRACT

Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI - 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions.


Subject(s)
Adsorption/genetics , Antibodies, Monoclonal/isolation & purification , Chromatography, Ion Exchange , Viruses/isolation & purification , Anion Exchange Resins/chemistry , Anions/chemistry , Antibodies, Monoclonal/genetics , Humans , Viruses/chemistry
15.
Biotechnol Prog ; 35(5): e2858, 2019 09.
Article in English | MEDLINE | ID: mdl-31148380

ABSTRACT

Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal.


Subject(s)
Antibodies, Monoclonal , Chromatography, Ion Exchange/methods , Viruses/isolation & purification , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/metabolism , Biotechnology/methods , CHO Cells , Cations/chemistry , Cricetinae , Cricetulus
16.
J Biosci Bioeng ; 124(2): 156-163, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28356218

ABSTRACT

A production system for a therapeutic monoclonal antibody was developed using the methylotrophic yeast Ogataea minuta IFO10746. The genetically engineered O. minuta secreted a detectable amount of anti-TRAIL receptor antibody into the culture supernatant, and the secreted antibody was purified by multiple column chromatography steps. In the purification process, both fully and partially assembled antibodies were detected and isolated. The fully assembled antibody from O. minuta showed almost the same biological activity as that derived from mammalian cells despite the distinct glycosylation profile, whereas the partially assembled antibody showed no cytotoxic activity. To increase the production of active antibody in O. minuta, we overexpressed selected chaperone proteins (included protein disulfide isomerase (OmPDI1), thiol oxidase (OmERO1), and immunoglobulin heavy chain binding protein (OmKAR2)) known to assist in the proper folding (in the endoplasmic reticulum) of proteins destined for secretion. Each of these chaperones enhanced antibody secretion, and together these three factors yielded 16-fold higher antibody accumulation while increasing the ratio of the fully assembled antibody compared to that from the parental strain. Supplementation of a rhodanine-3-acetic acid derivative (R3AD_1c), an inhibitor of O-mannosylation, further increased the secretion of the correctly assembled antibody. These results indicated that the co-overexpression of chaperones is an effective way to produce the correctly assembled antibody in O. minuta.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Molecular Chaperones/genetics , Saccharomycetales/metabolism , Animals , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Glycosylation , Molecular Chaperones/metabolism , Protein Processing, Post-Translational , Saccharomycetales/genetics
17.
FEBS Lett ; 591(3): 468-478, 2017 02.
Article in English | MEDLINE | ID: mdl-28074470

ABSTRACT

LipL and Cpr19 are nonheme, mononuclear Fe(II)-dependent, α-ketoglutarate (αKG):UMP oxygenases that catalyze the formation of CO2 , succinate, phosphate, and uridine-5'-aldehyde, the last of which is a biosynthetic precursor for several nucleoside antibiotics that inhibit bacterial translocase I (MraY). To better understand the chemistry underlying this unusual oxidative dephosphorylation and establish a mechanistic framework for LipL and Cpr19, we report herein the synthesis of two biochemical probes-[1',3',4',5',5'-2 H]UMP and the phosphonate derivative of UMP-and their activity with both enzymes. The results are consistent with a reaction coordinate that proceeds through the loss of one 2 H atom of [1',3',4',5',5'-2 H]UMP and stereospecific hydroxylation geminal to the phosphoester to form a cryptic intermediate, (5'R)-5'-hydroxy-UMP. Thus, these enzyme catalysts can additionally be assigned as UMP hydroxylase-phospholyases.


Subject(s)
Heme/metabolism , Iron/metabolism , Ketoglutaric Acids/metabolism , Oxygenases/metabolism , Uridine Monophosphate/metabolism , Biocatalysis , Hydrogen/metabolism , Hydroxylation , Oxidation-Reduction , Phosphorylation , Stereoisomerism , Substrate Specificity , Uridine Monophosphate/chemistry
18.
Biotechnol J ; 12(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27660109

ABSTRACT

Protein A chromatography (PAC) is commonly used as an efficient capture step in monoclonal antibody (mAb) separation processes. Usually dynamic binding capacity is used for choosing the right PAC. However, if aggregates can be efficiently removed during elution, it can make the following polishing steps easier. In this study a method for choosing the right PAC media in terms of mAb aggregate removal is proposed. Linear pH gradient elution experiments of two different mAbs on various PAC columns are carried out, where the elution behavior of aggregates as well as the monomer is measured. Aggregates of one mAb are more strongly retained compared with the mAb monomer. Another mAb showed different elution behavior, where the aggregates are eluted as both the weakly and strongly retained peaks. In order to remove the two types of aggregates by stepwise elution two protocols are tested. The first protocol A consisted of the sample loading, the wash with the equilibration buffer and the low pH elution. The wash stage of the second protocol B included the wash with 1.0 M arginine. No detectable peaks are observed during the wash stage of protocol A whereas significant peaks are monitored during the arginine wash of protocol B. One of the PAC columns showed a smaller peak during the arginine wash. In addition, both aggregate removal and monomer yield are higher with protocol B compared with the other PAC columns. This method is found to be useful for choosing the right PAC column.


Subject(s)
Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/isolation & purification , Arginine/chemistry , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Staphylococcal Protein A/metabolism
19.
Arch Sex Behav ; 45(7): 1681-95, 2016 10.
Article in English | MEDLINE | ID: mdl-27507021

ABSTRACT

The present study examined: (1) gender and age differences of mean gender identity disorder (GID) trait scores in Japanese twins; (2) the validity of the prenatal hormone transfer theory, which predicts that, in dizygotic (DZ) twin pairs, twins with an opposite-gender co-twin more frequently exhibit GID traits than twins with a same-gender co-twin; and (3) the magnitude of genetic and environmental influences on GID traits as a function of age and gender. Data from 1450 male twin pairs, 1882 female twin pairs, and 1022 DZ male-female pairs ranging from 3 to 26 years of age were analyzed. To quantify individual variances in GID traits, each participant completed four questionnaire items based on criteria for GID from the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). Our most important findings were: (1) Japanese females exhibited GID traits more frequently than males and Japanese children exhibited GID traits less frequently than adolescents and adults (among females, the prevalence was 1.6 % in children, 10 % in adolescents, and 12 % in adults; among males, the prevalence was 0.5, 2, and 3 %, respectively); (2) the data did not support the prenatal hormone transfer theory for GID traits; and (3) a large part of the variance for GID traits in children was accounted for by familial factors; however, the magnitude was found to be greater in children than in adolescents or adults, particularly among females. This study suggests that although the prevalence is likely to increase, familial effects are likely to decrease as individuals age.


Subject(s)
Gender Dysphoria , Twins, Dizygotic , Twins, Monozygotic , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Gender Dysphoria/epidemiology , Gender Dysphoria/genetics , Humans , Japan/epidemiology , Male , Surveys and Questionnaires , Twins, Dizygotic/genetics , Twins, Dizygotic/statistics & numerical data , Twins, Monozygotic/genetics , Twins, Monozygotic/statistics & numerical data , Young Adult
20.
Org Biomol Chem ; 14(16): 3956-62, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27050157

ABSTRACT

Using the ATP-independent transacylase CapW required for the biosynthesis of capuramycin-type antibiotics, we developed a biocatalytic approach for the synthesis of 43 analogues via a one-step aminolysis reaction from a methyl ester precursor as an acyl donor and various nonnative amines as acyl acceptors. Further examination of the donor substrate scope for CapW revealed that this enzyme can also catalyze a direct transamidation reaction using the major capuramycin congener as a semisynthetic precursor. Biological activity tests revealed that a few of the new capuramycin analogues have significantly improved antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Furthermore, most of the analogues are able to be covalently modified by the phosphotransferase CapP/Cpr17 involved in self resistance, providing critical insight for future studies regarding clinical development of the capuramycin antimycobacterial antibiotics.


Subject(s)
Acyltransferases/metabolism , Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Biocatalysis , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...