Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Immunol Methods ; 525: 113599, 2024 02.
Article in English | MEDLINE | ID: mdl-38081407

ABSTRACT

Intestinal transplantation is the definitive treatment for intestinal failure. However, tissue rejection and graft-versus-host disease are relatively common complications, necessitating aggressive immunosuppression that can itself pose further complications. Tracking intraluminal markers in ileal effluent from standard ileostomies may present a noninvasive and sensitive way to detect developing pathology within the intestinal graft. This would be an improvement compared to current assessments, which are limited by poor sensitivity and specificity, contributing to under or over-immunosuppression, respectively, and by the need for invasive biopsies. Herein, we report an approach to reproducibly analyze ileal fluid obtained through stoma sampling for antimicrobial peptide/protein concentrations, reasoning that these molecules may provide an assessment of intestinal homeostasis and levels of intestinal inflammation over time. Concentrations of lysozyme (LYZ), myeloperoxidase (MPO), calprotectin (S100A8/A9) and ß-defensin 2 (DEFB2) were assessed using adaptations of commercially available enzyme-linked immunosorbent assays (ELISAs). The concentration of α-defensin 5 (DEFA5) was assessed using a newly developed sandwich ELISA. Our data support that with proper preparation of ileal effluent specimens, precise and replicable determination of antimicrobial peptide/protein concentrations can be achieved for each of these target molecules via ELISA. This approach may prove to be reliable as a clinically useful assessment of intestinal homeostasis over time for patients with ileostomies.


Subject(s)
Antimicrobial Peptides , alpha-Defensins , Humans , Intestines , Enzyme-Linked Immunosorbent Assay , Biopsy
2.
Proc Natl Acad Sci U S A ; 120(47): e2312453120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956278

ABSTRACT

To mediate critical host-microbe interactions in the human small intestine, Paneth cells constitutively produce abundant levels of α-defensins and other antimicrobials. We report that the expression profile of these antimicrobials is dramatically askew in human small intestinal organoids (enteroids) as compared to that in paired tissue from which they are derived, with a reduction of α-defensins to nearly undetectable levels. Murine enteroids, however, recapitulate the expression profile of Paneth cell α-defensins seen in tissue. WNT/TCF signaling has been found to be instrumental in the regulation of α-defensins, yet in human enteroids exogenous stimulation of WNT signaling appears insufficient to rescue α-defensin expression. By stark contrast, forkhead box O (FOXO) inhibitor AS1842856 induced the expression of α-defensin mRNA in enteroids by >100,000-fold, restoring DEFA5 and DEFA6 to levels comparable to those found in primary human tissue. These results newly identify FOXO signaling as a pathway of biological and potentially therapeutic relevance for the regulation of human Paneth cell α-defensins in health and disease.


Subject(s)
Anti-Infective Agents , alpha-Defensins , Humans , Animals , Mice , alpha-Defensins/genetics , alpha-Defensins/pharmacology , alpha-Defensins/metabolism , Intestines , Intestine, Small/metabolism , Paneth Cells/metabolism , Anti-Infective Agents/metabolism , Organoids/metabolism
3.
Nat Biomed Eng ; 7(1): 38-55, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36550307

ABSTRACT

The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Peanut Hypersensitivity , Mice , Animals , Micelles , Butyrates
4.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235565

ABSTRACT

Iron supplements are frequently provided to infants in high-income countries despite low incidence of iron deficiency. There is growing concern regarding adverse health and development outcomes of excess iron provision in early life. Excess iron may directly damage developing organs through the formation of reactive oxygen species, alter systemic inflammatory signaling, and/or dysregulate trace mineral metabolism. To better characterize the in vivo effects of excess iron on development, we utilized a pre-weanling rat pup model. Lewis rat litters were culled to eight pups (four males and four females) and randomly assigned to daily supplementation groups receiving either vehicle control (CON; 10% w/v sucrose solution) or ferrous sulfate (FS) iron at one of the following doses: 10, 30, or 90 mg iron/kg body weight-FS-10, FS-30, and FS-90, respectively-from postnatal day (PD) 2 through 9. FS-90 litters, but not FS-30 or FS-10, failed to thrive compared to CON litters and had smaller brains on PD 10. Among the groups, FS-90 liver iron levels were highest, as were white blood cell counts. Compared to CON, circulating MCP-1 and liver zinc were increased in FS-90 pups, whereas liver copper was decreased. Growth defects due to excess FS provision in pre-weanling rats may be related to liver injury, inflammation, and altered trace mineral metabolism.


Subject(s)
Iron Overload , Trace Elements , Animals , Copper , Dietary Supplements , Female , Ferrous Compounds , Iron/metabolism , Male , Rats , Rats, Inbred Lew , Reactive Oxygen Species , Sucrose , Trace Elements/pharmacology , Zinc
5.
Front Immunol ; 13: 894649, 2022.
Article in English | MEDLINE | ID: mdl-36072603

ABSTRACT

Intelectins are carbohydrate-binding proteins implicated in innate immunity and highly conserved across chordate evolution, including both ascidians and humans. Human intelectin-1 (ITLN1) is highly abundant within the intestinal mucosa and binds microbial but not host glycans. Genome-wide association studies identified SNPs in ITLN1 that are linked to susceptibility for Crohn's disease. Moreover, ITLN1 has been implicated in the pathophysiology of obesity and associated metabolic disease. To gain insight on biological activities of human ITLN1 in vivo, we developed a C57BL/6 mouse model genetically targeting the gene encoding the functional mouse ortholog. In wild-type C57BL/6 mice, both mRNA and protein analysis showed high expression of Itln1 in the small intestine, but manifold lower levels in colon and other extraintestinal tissues. Whereas intestinal expression of human ITLN1 localizes to goblet cells, our data confirm that mouse Itln1 is expressed in Paneth cells. Compared to wild-type littermate controls, mice homozygous for the Itln1 hypomorphic trapping allele had reduced expression levels of Itln1 expression (~10,000-fold). The knockout mice exhibited increased susceptibility in an acute model of experimentally induced colitis with 2% w/v dextran sulfate sodium (DSS). In a model of chronic colitis using a lower dose of DSS (1.5% w/v), which enabled a detailed view of disease activity across a protracted period, no differences were observed in body weight, fecal texture, hemoccult scores, food/water intake, or colon length at necropsy, but there was a statistically significant genotype over time effect for the combined fecal scores of disease activity. In model of diet-induced obesity, using two western-style diets, which varied in amounts of sugar (as sucrose) and saturated fat (as lard), mice with Itln1 expression ablated showed no increased susceptibility, in terms of weight gain, food intake, plasma markers of obesity compared to wildtype littermates. While the mouse genetic knockout model for Itln1 holds promise for elucidating physiological function(s) for mammalian intelectins, results reported here suggest that Itln1, a Paneth cell product in C57BL/6 mice, likely plays a minor role in the pathophysiology of chemically induced colitis or diet-induced obesity.


Subject(s)
Colitis , Cytokines , GPI-Linked Proteins , Genome-Wide Association Study , Lectins , Animals , Colitis/chemically induced , Colitis/genetics , Cytokines/genetics , Disease Models, Animal , GPI-Linked Proteins/genetics , Humans , Lectins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity
7.
Nutrients ; 14(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35276770

ABSTRACT

The gut microbiota is implicated in the adverse developmental outcomes of postnatal iron supplementation. To generate hypotheses on how changes to the gut microbiota by iron adversely affect development, and to determine whether the form of iron influences microbiota outcomes, we characterized gut microbiome and metabolome changes in Sprague-Dawley rat pups given oral supplements of ferrous sulfate (FS), ferrous bis-glycinate chelate (FC), or vehicle control (CON) on postnatal day (PD) 2−14. Iron supplementation reduced microbiome alpha-diversity (p < 0.0001) and altered short-chain fatty acids (SCFAs) and trimethylamine (TMA) in a form-dependent manner. To investigate the long-term effects of iron provision in early life, an additional cohort was supplemented with FS, FC, or CON until PD 21 and then weaned onto standard chow. At ~8 weeks of age, young adult (YA) rats that received FS exhibited more diverse microbiomes compared to CON (p < 0.05), whereas FC microbiomes were less diverse (p < 0.05). Iron provision resulted in 10,000-fold reduced abundance of Lactobacilli in pre-weanling and YA animals provided iron in early life (p < 0.0001). Our results suggest that in pre-weanling rats, supplemental iron form can generate differential effects on the gut microbiota and microbial metabolism that persist into adulthood.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Dietary Supplements , Iron , Rats , Rats, Sprague-Dawley
8.
FASEB J ; 36(3): e22200, 2022 03.
Article in English | MEDLINE | ID: mdl-35182405

ABSTRACT

Intelectins (intestinal lectins) are highly conserved across chordate evolution and have been implicated in various human diseases, including Crohn's disease (CD). The human genome encodes two intelectin genes, intelectin-1 (ITLN1) and intelectin-2 (ITLN2). Other than its high sequence similarity with ITLN1, little is known about ITLN2. To address this void in knowledge, we report that ITLN2 exhibits discrete, yet notable differences from ITLN1 in primary structure, including a unique amino terminus, as well as changes in amino acid residues associated with the glycan-binding activity of ITLN1. We identified that ITLN2 is a highly abundant Paneth cell-specific product, which localizes to secretory granules, and is expressed as a multimeric protein in the small intestine. In surgical specimens of ileal CD, ITLN2 mRNA levels were reduced approximately five-fold compared to control specimens. The ileal expression of ITLN2 was unaffected by previously reported disease-associated variants in ITLN2 and CD-associated variants in neighboring ITLN1 as well as NOD2 and ATG16L1. ITLN2 mRNA expression was undetectable in control colon tissue; however, in both ulcerative colitis (UC) and colonic CD, metaplastic Paneth cells were found to express ITLN2. Together, the data reported establish the groundwork for understanding ITLN2 function(s) in the intestine, including its possible role in CD.


Subject(s)
Crohn Disease/metabolism , Lectins/metabolism , Paneth Cells/metabolism , Secretory Vesicles/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Humans , Lectins/genetics , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Sci Rep ; 11(1): 15548, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330944

ABSTRACT

Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.


Subject(s)
Cytokines/genetics , Lectins/genetics , Animals , Evolution, Molecular , GPI-Linked Proteins/genetics , Humans , Laboratories , Mice , Mice, Inbred C57BL , Phylogeny , RNA, Messenger/genetics
10.
Sci Rep ; 11(1): 12889, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145348

ABSTRACT

Intelectins are ancient carbohydrate binding proteins, spanning chordate evolution and implicated in multiple human diseases. Previous GWAS have linked SNPs in ITLN1 (also known as omentin) with susceptibility to Crohn's disease (CD); however, analysis of possible functional significance of SNPs at this locus is lacking. Using the Ensembl database, pairwise linkage disequilibrium (LD) analyses indicated that several disease-associated SNPs at the ITLN1 locus, including SNPs in CD244 and Ly9, were in LD. The alleles comprising the risk haplotype are the major alleles in European (67%), but minor alleles in African superpopulations. Neither ITLN1 mRNA nor protein abundance in intestinal tissue, which we confirm as goblet-cell derived, was altered in the CD samples overall nor when samples were analyzed according to genotype. Moreover, the missense variant V109D does not influence ITLN1 glycan binding to the glycan ß-D-galactofuranose or protein-protein oligomerization. Taken together, our data are an important step in defining the role(s) of the CD-risk haplotype by determining that risk is unlikely to be due to changes in ITLN1 carbohydrate recognition, protein oligomerization, or expression levels in intestinal mucosa. Our findings suggest that the relationship between the genomic data and disease arises from changes in CD244 or Ly9 biology, differences in ITLN1 expression in other tissues, or an alteration in ITLN1 interaction with other proteins.


Subject(s)
Cytokines/genetics , Gastrointestinal Tract/metabolism , Gene Expression Regulation , Genetic Variation , Lectins/genetics , Alleles , Crohn Disease/genetics , Cytokines/chemistry , Disease Susceptibility , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , Genetic Loci , Humans , Lectins/chemistry , Organ Specificity/genetics
11.
Science ; 372(6539)2021 04 16.
Article in English | MEDLINE | ID: mdl-33859001

ABSTRACT

The intestinal mucus layer, an important element of epithelial protection, is produced by goblet cells. Intestinal goblet cells are assumed to be a homogeneous cell type. In this study, however, we delineated their specific gene and protein expression profiles and identified several distinct goblet cell populations that form two differentiation trajectories. One distinct subtype, the intercrypt goblet cells (icGCs), located at the colonic luminal surface, produced mucus with properties that differed from the mucus secreted by crypt-residing goblet cells. Mice with defective icGCs had increased sensitivity to chemically induced colitis and manifested spontaneous colitis with age. Furthermore, alterations in mucus and reduced numbers of icGCs were observed in patients with both active and remissive ulcerative colitis, which highlights the importance of icGCs in maintaining functional protection of the epithelium.


Subject(s)
Colon/cytology , Goblet Cells/physiology , Intestinal Mucosa/cytology , Mucus/physiology , Animals , Cell Differentiation , Colitis/chemically induced , Colitis/physiopathology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/physiopathology , Colon/physiology , Goblet Cells/cytology , Humans , Intestinal Mucosa/physiology , Intestine, Small/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-ets/genetics , Transcriptome
12.
Sci Rep ; 9(1): 13115, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511628

ABSTRACT

Abundant evidence from many laboratories supports the premise that α-defensin peptides secreted from Paneth cells are key mediators of host-microbe interactions in the small intestine that contribute to host defense and homeostasis. α-defensins are among the most highly expressed antimicrobial peptides at this mucosal surface in many mammals, including humans and mice; however, there is striking variation among species in the number and primary structure of α-defensin paralogs. Studies of these biomolecules in vivo are further complicated by striking variations between laboratory mouse strains. Herein, we report an experimental approach to determine with precision and specificity expression levels of α-defensin (Defa) mRNA in the small intestine of C57BL/6 mice through an optimized set of oligonucleotide primers for qRT-PCR assays and cloned cDNA plasmids corresponding to the Defa paralogs. This approach demonstrated marked differences in α-defensin expression in C57BL/6 mice with respect to proximal/distal anatomical location and developmental stage, which have not been described previously. These data underscore the importance of careful attention to method (primer choice, proximal vs. distal location, and developmental stage) in analysis of antimicrobial peptide expression and their impact.


Subject(s)
Gene Expression Regulation, Developmental , Intestine, Small/metabolism , Paneth Cells/metabolism , RNA, Messenger/metabolism , alpha-Defensins/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Paneth Cells/cytology , RNA, Messenger/genetics , alpha-Defensins/genetics
13.
PLoS Pathog ; 15(4): e1007719, 2019 04.
Article in English | MEDLINE | ID: mdl-30973939

ABSTRACT

The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1ß, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.


Subject(s)
Acetylcholine/metabolism , Citrobacter rodentium/immunology , Colon/immunology , Enterobacteriaceae Infections/immunology , T-Lymphocytes/immunology , Animals , Cells, Cultured , Colon/metabolism , Cytokines/metabolism , Enterobacteriaceae Infections/microbiology , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR5/physiology
14.
PLoS One ; 13(1): e0190632, 2018.
Article in English | MEDLINE | ID: mdl-29324762

ABSTRACT

Obesity and accompanying metabolic disease is negatively correlated with lung health yet the exact mechanisms by which obesity affects the lung are not well characterized. Since obesity is associated with lung diseases as chronic bronchitis and asthma, we designed a series of experiments to measure changes in lung metabolism in mice fed obesogenic diets. Mice were fed either control or high fat/sugar diet (45%kcal fat/17%kcal sucrose), or very high fat diet (60%kcal fat/7% sucrose) for 150 days. We performed untargeted metabolomics by GC-TOFMS and HILIC-QTOFMS and lipidomics by RPLC-QTOFMS to reveal global changes in lung metabolism resulting from obesity and diet composition. From a total of 447 detected metabolites, we found 91 metabolite and lipid species significantly altered in mouse lung tissues upon dietary treatments. Significantly altered metabolites included complex lipids, free fatty acids, energy metabolites, amino acids and adenosine and NAD pathway members. While some metabolites were altered in both obese groups compared to control, others were different between obesogenic diet groups. Furthermore, a comparison of changes between lung, kidney and liver tissues indicated few metabolic changes were shared across organs, suggesting the lung is an independent metabolic organ. These results indicate obesity and diet composition have direct mechanistic effects on composition of the lung metabolome, which may contribute to disease progression by lung-specific pathways.


Subject(s)
Diet, High-Fat , Dietary Sucrose/administration & dosage , Metabolomics , Obesity/etiology , Animals , Chromatography, Reverse-Phase , Energy Metabolism , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...