Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 16: 36, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27068216

ABSTRACT

BACKGROUND: G protein-coupled receptors (GPCRs) are ubiquitous surface proteins mediating various biological responses and thus, important targets for therapeutic drugs. GPCRs individually produce their own signaling as well as modulate the signaling of other GPCRs. Real-time observation of GPCR signaling and modulation in living cells is key to molecular study of biological responses and pharmaceutical development. However, fluorescence imaging, the technique widely used for this purpose, requires a fluorescent dye which may inhibit biological responses or a fluorescent-tagged target protein created through time-consuming genetic manipulation. In this study, we applied two-dimensional surface plasmon resonance (SPR) imaging to monitoring the translocation of protein kinase C (PKC), a major GPCR-coupled signaling molecule in the widely used HEK293 cell lines and examined whether the signaling of, and, modulation between heterologously expressed GPCRs can be measured without fluorescent labeling. RESULTS: We cultured HEK293 cells on the gold-plated slide glass and evoked SPR at the interface between the cell's plasma membrane and the gold surface with incident light. The translocation of activated native PKC to the plasma membrane is expected to alter the incident angle-SPR extent relation, and this could be detected as a change in the intensity of light reflection from the specimen illuminated at a fixed incident angle. Direct activation of PKC with 12-O-tetradecanoylphorbol-13-acetate increased the reflection intensity. This increase indeed reported PKC translocation because it was reduced by a pre-treatment with bisindolylmaleimide-1, a PKC inhibitor. We further applied this technique to a stable HEK293 cell line heterologously expressing the GPCRs type-1 metabotropic glutamate receptor (mGluR1) and adenosine A1 receptor (A1R). (RS)-3,5-dihydroxyphenylglycine, a mGluR1 agonist, increased the reflection intensity, and the PKC inhibitor reduced this increase. A pre-treatment with (R)-N(6)-phenylisopropyladenosine, an A1R-selective agonist suppressed mGluR1-mediated reflection increase. These results suggest that our technique can detect PKC translocation initiated by ligand binding to mGluR1 and its modulation by A1R. CONCLUSIONS: SPR imaging turned out to be utilizable for monitoring GPCR-mediated PKC translocation and its modulation by a different GPCR in a heterologous expression system. This technique provides a powerful yet easy-to-use tool for molecular study of biological responses and pharmaceutical development.


Subject(s)
Protein Kinase C/metabolism , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/metabolism , Signal Transduction/physiology , Surface Plasmon Resonance/methods , HEK293 Cells , Humans , Protein Kinase C/analysis , Receptors, G-Protein-Coupled/analysis , Recombinant Proteins/analysis
2.
Genes (Basel) ; 5(4): 1095-114, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25513882

ABSTRACT

Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer's disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

3.
Circ J ; 78(3): 610-8, 2014.
Article in English | MEDLINE | ID: mdl-24419801

ABSTRACT

BACKGROUND: KCNE1 encodes a modulator of KCNH2 and KCNQ1 delayed rectifier K(+) current channels. KCNE1 mutations might cause long QT syndrome (LQTS) by impairing KCNE1 subunit's modulatory actions on these channels. There are major and minor polymorphismic KCNE1 variants whose 38(th) amino acids are glycine and serine [KCNE1(38G) and KCNE1(38S) subunits], respectively. Despite its frequent occurrence, the influence of this polymorphism on the K(+) channels' function is unclear. METHODS AND RESULTS: Patch-clamp recordings were obtained from human embryonic kidney -293T cells. KCNH2 channel current density in KCNE1(38S)-transfected cells was smaller than that in KCNE1(38G)-transfected cells by 34%. The voltage-sensitivity of the KCNQ1 channel current in KCNE1(38S)-transfected cells was lowered compared to that in KCNE1(38G)-transfected cells, with a +13mV shift in the half-maximal activation voltage. KCNH2 channel current density or KCNQ1 channel voltage-sensitivity was not different between KCNE1(38G)-transfected cells and cells transfected with both KCNE1(38G) and KCNE1(38S). Moreover, the KCNH2 channel current in KCNE1(38S)-transfected cells was more susceptible to E4031, a QT prolonging drug and a condition with hypokalemia, than that in KCNE1(38G)-transfected cells. CONCLUSIONS: Homozygous inheritance of KCNE1(38S) might cause a mild reduction of the delayed rectifier K(+) currents and might thereby increase an arrhythmogenic potential particularly in the presence of QT prolonging factors. By contrast, heterozygous inheritance of KCNE1(38G) and KCNE1(38S) might not affect the K(+) currents significantly. (Circ J 2014; 78: 610-618).


Subject(s)
Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Polymorphism, Genetic , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Amino Acid Substitution , Female , Glycine/genetics , Glycine/metabolism , HEK293 Cells , Humans , Ion Transport/genetics , Male , Potassium/metabolism , Serine/genetics , Serine/metabolism
4.
J Physiol Sci ; 63(5): 395-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23824466

ABSTRACT

The optokinetic reflex (OKR) is useful to monitor the function of the visual and motor nervous systems. However, OKR measurement is not open to all because dedicated commercial equipment or detailed instructions for building in-house equipment is rarely offered. Here we describe the design of an easy-to-install/use yet reliable OKR measuring system including a computer program to visually locate the pupil and a mathematical procedure to estimate the pupil azimuth from the location data. The pupil locating program was created on a low-cost machine vision development platform, whose graphical user interface allows one to compose and operate the program without programming expertise. Our system located mouse pupils at a high success rate (~90 %), estimated their azimuth precisely (~94 %), and detected changes in OKR gain due to the pharmacological modulation of the cerebellar flocculi. The system would promote behavioral assessment in physiology, pharmacology, and genetics.


Subject(s)
Motor Neurons/physiology , Pupil/physiology , Reflex/physiology , Vision, Ocular/physiology , Animals , Mice , Nervous System Physiological Phenomena
5.
J Cardiovasc Electrophysiol ; 23(11): 1246-53, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22764740

ABSTRACT

INTRODUCTION: Mutations of human ether-à-go-go-related gene (hERG), which encodes a cardiac K(+) channel responsible for the acceleration of the repolarizing phase of an action potential and the prevention of premature action potential regeneration, often cause severe arrhythmic disorders. We found a novel missense mutation of hERG that results in a G487R substitution in the S2-S3 loop of the channel subunit [hERG(G487R)] from a family and determined whether this mutant gene could induce an abnormality in channel function. METHODS AND RESULTS: We made whole-cell voltage-clamp recordings from HEK-293T cells transfected with wild-type hERG [hERG(WT)], hERG(G487R), or both. We measured hERG channel-mediated current as the "tail" of a depolarization-elicited current. The current density of the tail current and its voltage- and time-dependences were not different among all the cell groups. The time-courses of deactivation, inactivation, and recovery from inactivation and their voltage-dependences were not different among all the cell groups. Furthermore, we performed immunocytochemical analysis using an anti-hERG subunit antibody. The ratio of the immunoreactivity of the plasma membrane to that of the cytoplasm was not different between cells transfected with hERG(WT), hERG(G487R), or both. CONCLUSION: hERG(G487R) can produce functional channels with normal gating kinetics and cell-surface expression efficiency with or without the aid of hERG(WT). Therefore, neither the heterozygous nor homozygous inheritance of hERG(G487R) is thought to cause severe cardiac disorders. hERG(G487R) would be a candidate for a rare variant or polymorphism of hERG with an amino acid substitution in the unusual region of the channel subunit.


Subject(s)
Arrhythmias, Cardiac/genetics , Death, Sudden, Cardiac/etiology , Ether-A-Go-Go Potassium Channels/genetics , Mutation, Missense , Action Potentials , Amino Acid Sequence , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/mortality , Cell Membrane/metabolism , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Female , Genetic Predisposition to Disease , HEK293 Cells , Humans , Immunohistochemistry , Ion Channel Gating , Kinetics , Male , Molecular Sequence Data , Patch-Clamp Techniques , Phenotype , Potassium/metabolism , Protein Subunits , Transfection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...